Author: L. Zhizhiashvili
Publisher: Springer Science & Business Media
ISBN: 9400902832
Category : Mathematics
Languages : en
Pages : 314
Book Description
Research in the theory of trigonometric series has been carried out for over two centuries. The results obtained have greatly influenced various fields of mathematics, mechanics, and physics. Nowadays, the theory of simple trigonometric series has been developed fully enough (we will only mention the monographs by Zygmund [15, 16] and Bari [2]). The achievements in the theory of multiple trigonometric series look rather modest as compared to those in the one-dimensional case though multiple trigonometric series seem to be a natural, interesting and promising object of investigation. We should say, however, that the past few decades have seen a more intensive development of the theory in this field. To form an idea about the theory of multiple trigonometric series, the reader can refer to the surveys by Shapiro [1], Zhizhiashvili [16], [46], Golubov [1], D'yachenko [3]. As to monographs on this topic, only that ofYanushauskas [1] is known to me. This book covers several aspects of the theory of multiple trigonometric Fourier series: the existence and properties of the conjugates and Hilbert transforms of integrable functions; convergence (pointwise and in the LP-norm, p > 0) of Fourier series and their conjugates, as well as their summability by the Cesaro (C,a), a> -1, and Abel-Poisson methods; approximating properties of Cesaro means of Fourier series and their conjugates.
Fourier Series, Fourier Transform and Their Applications to Mathematical Physics
Author: Valery Serov
Publisher: Springer
ISBN: 9783319879857
Category : Mathematics
Languages : en
Pages : 0
Book Description
This text serves as an introduction to the modern theory of analysis and differential equations with applications in mathematical physics and engineering sciences. Having outgrown from a series of half-semester courses given at University of Oulu, this book consists of four self-contained parts. The first part, Fourier Series and the Discrete Fourier Transform, is devoted to the classical one-dimensional trigonometric Fourier series with some applications to PDEs and signal processing. The second part, Fourier Transform and Distributions, is concerned with distribution theory of L. Schwartz and its applications to the Schrödinger and magnetic Schrödinger operations. The third part, Operator Theory and Integral Equations, is devoted mostly to the self-adjoint but unbounded operators in Hilbert spaces and their applications to integral equations in such spaces. The fourth and final part, Introduction to Partial Differential Equations, serves as an introduction to modern methods for classical theory of partial differential equations. Complete with nearly 250 exercises throughout, this text is intended for graduate level students and researchers in the mathematical sciences and engineering.
Publisher: Springer
ISBN: 9783319879857
Category : Mathematics
Languages : en
Pages : 0
Book Description
This text serves as an introduction to the modern theory of analysis and differential equations with applications in mathematical physics and engineering sciences. Having outgrown from a series of half-semester courses given at University of Oulu, this book consists of four self-contained parts. The first part, Fourier Series and the Discrete Fourier Transform, is devoted to the classical one-dimensional trigonometric Fourier series with some applications to PDEs and signal processing. The second part, Fourier Transform and Distributions, is concerned with distribution theory of L. Schwartz and its applications to the Schrödinger and magnetic Schrödinger operations. The third part, Operator Theory and Integral Equations, is devoted mostly to the self-adjoint but unbounded operators in Hilbert spaces and their applications to integral equations in such spaces. The fourth and final part, Introduction to Partial Differential Equations, serves as an introduction to modern methods for classical theory of partial differential equations. Complete with nearly 250 exercises throughout, this text is intended for graduate level students and researchers in the mathematical sciences and engineering.
Fourier Series
Author: R. E. Edwards
Publisher: Springer Science & Business Media
ISBN: 1461381568
Category : Mathematics
Languages : en
Pages : 381
Book Description
appear in Volume 1, a Roman numeral "I" has been prefixed as a reminder to the reader; thus, for example, "I,B.2.1 " refers to Appendix B.2.1 in Volume 1. An understanding of the main topics discussed in this book does not, I hope, hinge upon repeated consultation of the items listed in the bibli ography. Readers with a limited aim should find strictly necessary only an occasional reference to a few of the book listed. The remaining items, and especially the numerous research papers mentioned, are listed as an aid to those readers who wish to pursue the subject beyond the limits reached in this book; such readers must be prepared to make the very considerable effort called for in making an acquaintance with current research literature. A few of the research papers listed cover devel opments that came to my notice too late for mention in the main text. For this reason, any attempted summary in the main text of the current standing of a research problem should be supplemented by an examin ation of the bibliography and by scrutiny of the usual review literature.
Publisher: Springer Science & Business Media
ISBN: 1461381568
Category : Mathematics
Languages : en
Pages : 381
Book Description
appear in Volume 1, a Roman numeral "I" has been prefixed as a reminder to the reader; thus, for example, "I,B.2.1 " refers to Appendix B.2.1 in Volume 1. An understanding of the main topics discussed in this book does not, I hope, hinge upon repeated consultation of the items listed in the bibli ography. Readers with a limited aim should find strictly necessary only an occasional reference to a few of the book listed. The remaining items, and especially the numerous research papers mentioned, are listed as an aid to those readers who wish to pursue the subject beyond the limits reached in this book; such readers must be prepared to make the very considerable effort called for in making an acquaintance with current research literature. A few of the research papers listed cover devel opments that came to my notice too late for mention in the main text. For this reason, any attempted summary in the main text of the current standing of a research problem should be supplemented by an examin ation of the bibliography and by scrutiny of the usual review literature.
Trigonometric Fourier Series and Their Conjugates
Author: L. Zhizhiashvili
Publisher: Springer Science & Business Media
ISBN: 9400902832
Category : Mathematics
Languages : en
Pages : 314
Book Description
Research in the theory of trigonometric series has been carried out for over two centuries. The results obtained have greatly influenced various fields of mathematics, mechanics, and physics. Nowadays, the theory of simple trigonometric series has been developed fully enough (we will only mention the monographs by Zygmund [15, 16] and Bari [2]). The achievements in the theory of multiple trigonometric series look rather modest as compared to those in the one-dimensional case though multiple trigonometric series seem to be a natural, interesting and promising object of investigation. We should say, however, that the past few decades have seen a more intensive development of the theory in this field. To form an idea about the theory of multiple trigonometric series, the reader can refer to the surveys by Shapiro [1], Zhizhiashvili [16], [46], Golubov [1], D'yachenko [3]. As to monographs on this topic, only that ofYanushauskas [1] is known to me. This book covers several aspects of the theory of multiple trigonometric Fourier series: the existence and properties of the conjugates and Hilbert transforms of integrable functions; convergence (pointwise and in the LP-norm, p > 0) of Fourier series and their conjugates, as well as their summability by the Cesaro (C,a), a> -1, and Abel-Poisson methods; approximating properties of Cesaro means of Fourier series and their conjugates.
Publisher: Springer Science & Business Media
ISBN: 9400902832
Category : Mathematics
Languages : en
Pages : 314
Book Description
Research in the theory of trigonometric series has been carried out for over two centuries. The results obtained have greatly influenced various fields of mathematics, mechanics, and physics. Nowadays, the theory of simple trigonometric series has been developed fully enough (we will only mention the monographs by Zygmund [15, 16] and Bari [2]). The achievements in the theory of multiple trigonometric series look rather modest as compared to those in the one-dimensional case though multiple trigonometric series seem to be a natural, interesting and promising object of investigation. We should say, however, that the past few decades have seen a more intensive development of the theory in this field. To form an idea about the theory of multiple trigonometric series, the reader can refer to the surveys by Shapiro [1], Zhizhiashvili [16], [46], Golubov [1], D'yachenko [3]. As to monographs on this topic, only that ofYanushauskas [1] is known to me. This book covers several aspects of the theory of multiple trigonometric Fourier series: the existence and properties of the conjugates and Hilbert transforms of integrable functions; convergence (pointwise and in the LP-norm, p > 0) of Fourier series and their conjugates, as well as their summability by the Cesaro (C,a), a> -1, and Abel-Poisson methods; approximating properties of Cesaro means of Fourier series and their conjugates.
Fourier Series, a Modern Introduction
Author: Robert E. Edwards
Publisher:
ISBN:
Category : Fourier series
Languages : en
Pages : 242
Book Description
Publisher:
ISBN:
Category : Fourier series
Languages : en
Pages : 242
Book Description
Fourier Series
Author: Georgi P. Tolstov
Publisher: Courier Corporation
ISBN: 0486141748
Category : Mathematics
Languages : en
Pages : 354
Book Description
This reputable translation covers trigonometric Fourier series, orthogonal systems, double Fourier series, Bessel functions, the Eigenfunction method and its applications to mathematical physics, operations on Fourier series, and more. Over 100 problems. 1962 edition.
Publisher: Courier Corporation
ISBN: 0486141748
Category : Mathematics
Languages : en
Pages : 354
Book Description
This reputable translation covers trigonometric Fourier series, orthogonal systems, double Fourier series, Bessel functions, the Eigenfunction method and its applications to mathematical physics, operations on Fourier series, and more. Over 100 problems. 1962 edition.
The Fourier Transform and Its Applications
Author: Ronald Newbold Bracewell
Publisher:
ISBN:
Category : Fourier transformations
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category : Fourier transformations
Languages : en
Pages :
Book Description
Pointwise Convergence of Fourier Series
Author: Juan Arias de Reyna
Publisher: Springer
ISBN: 3540458220
Category : Mathematics
Languages : en
Pages : 180
Book Description
This book contains a detailed exposition of Carleson-Hunt theorem following the proof of Carleson: to this day this is the only one giving better bounds. It points out the motivation of every step in the proof. Thus the Carleson-Hunt theorem becomes accessible to any analyst.The book also contains the first detailed exposition of the fine results of Hunt, Sjölin, Soria, etc on the convergence of Fourier Series. Its final chapters present original material. With both Fefferman's proof and the recent one of Lacey and Thiele in print, it becomes more important than ever to understand and compare these two related proofs with that of Carleson and Hunt. These alternative proofs do not yield all the results of the Carleson-Hunt proof. The intention of this monograph is to make Carleson's proof accessible to a wider audience, and to explain its consequences for the pointwise convergence of Fourier series for functions in spaces near $äcal Lü^1$, filling a well-known gap in the literature.
Publisher: Springer
ISBN: 3540458220
Category : Mathematics
Languages : en
Pages : 180
Book Description
This book contains a detailed exposition of Carleson-Hunt theorem following the proof of Carleson: to this day this is the only one giving better bounds. It points out the motivation of every step in the proof. Thus the Carleson-Hunt theorem becomes accessible to any analyst.The book also contains the first detailed exposition of the fine results of Hunt, Sjölin, Soria, etc on the convergence of Fourier Series. Its final chapters present original material. With both Fefferman's proof and the recent one of Lacey and Thiele in print, it becomes more important than ever to understand and compare these two related proofs with that of Carleson and Hunt. These alternative proofs do not yield all the results of the Carleson-Hunt proof. The intention of this monograph is to make Carleson's proof accessible to a wider audience, and to explain its consequences for the pointwise convergence of Fourier series for functions in spaces near $äcal Lü^1$, filling a well-known gap in the literature.
Fourier Analysis and Approximation
Author: P.L. Butzer
Publisher: Birkhäuser
ISBN: 3034874480
Category : Mathematics
Languages : en
Pages : 565
Book Description
At the international conference on 'Harmonic Analysis and Integral Transforms', conducted by one of the authors at the Mathematical Research Institute in Oberwolfach (Black Forest) in August 1965, it was felt that there was a real need for a book on Fourier analysis stressing (i) parallel treatment of Fourier series and Fourier trans forms from a transform point of view, (ii) treatment of Fourier transforms in LP(lRn)_ space not only for p = 1 and p = 2, (iii) classical solution of partial differential equations with completely rigorous proofs, (iv) theory of singular integrals of convolu tion type, (v) applications to approximation theory including saturation theory, (vi) multiplier theory, (vii) Hilbert transforms, Riesz fractional integrals, Bessel potentials, (viii) Fourier transform methods on locally compact groups. This study aims to consider these aspects, presenting a systematic treatment of Fourier analysis on the circle as well as on the infinite line, and of those areas of approximation theory which are in some way or other related thereto. A second volume is in preparation which goes beyond the one-dimensional theory presented here to cover the subject for functions of several variables. Approximately a half of this first volume deals with the theories of Fourier series and of Fourier integrals from a transform point of view.
Publisher: Birkhäuser
ISBN: 3034874480
Category : Mathematics
Languages : en
Pages : 565
Book Description
At the international conference on 'Harmonic Analysis and Integral Transforms', conducted by one of the authors at the Mathematical Research Institute in Oberwolfach (Black Forest) in August 1965, it was felt that there was a real need for a book on Fourier analysis stressing (i) parallel treatment of Fourier series and Fourier trans forms from a transform point of view, (ii) treatment of Fourier transforms in LP(lRn)_ space not only for p = 1 and p = 2, (iii) classical solution of partial differential equations with completely rigorous proofs, (iv) theory of singular integrals of convolu tion type, (v) applications to approximation theory including saturation theory, (vi) multiplier theory, (vii) Hilbert transforms, Riesz fractional integrals, Bessel potentials, (viii) Fourier transform methods on locally compact groups. This study aims to consider these aspects, presenting a systematic treatment of Fourier analysis on the circle as well as on the infinite line, and of those areas of approximation theory which are in some way or other related thereto. A second volume is in preparation which goes beyond the one-dimensional theory presented here to cover the subject for functions of several variables. Approximately a half of this first volume deals with the theories of Fourier series and of Fourier integrals from a transform point of view.
On the Pointwise Convergence of Fourier Series
Author: Charles J. Mozzochi
Publisher: Springer
ISBN: 3540366563
Category : Mathematics
Languages : en
Pages : 94
Book Description
Publisher: Springer
ISBN: 3540366563
Category : Mathematics
Languages : en
Pages : 94
Book Description
A First Course in Fourier Analysis
Author: David W. Kammler
Publisher: Cambridge University Press
ISBN: 1139469037
Category : Mathematics
Languages : en
Pages : 39
Book Description
This book provides a meaningful resource for applied mathematics through Fourier analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analysis, the fast Fourier transform, and a powerful elementary theory of generalized functions and shows how these mathematical ideas can be used to study sampling theory, PDEs, probability, diffraction, musical tones, and wavelets. The book contains an unusually complete presentation of the Fourier transform calculus. It uses concepts from calculus to present an elementary theory of generalized functions. FT calculus and generalized functions are then used to study the wave equation, diffusion equation, and diffraction equation. Real-world applications of Fourier analysis are described in the chapter on musical tones. A valuable reference on Fourier analysis for a variety of students and scientific professionals, including mathematicians, physicists, chemists, geologists, electrical engineers, mechanical engineers, and others.
Publisher: Cambridge University Press
ISBN: 1139469037
Category : Mathematics
Languages : en
Pages : 39
Book Description
This book provides a meaningful resource for applied mathematics through Fourier analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analysis, the fast Fourier transform, and a powerful elementary theory of generalized functions and shows how these mathematical ideas can be used to study sampling theory, PDEs, probability, diffraction, musical tones, and wavelets. The book contains an unusually complete presentation of the Fourier transform calculus. It uses concepts from calculus to present an elementary theory of generalized functions. FT calculus and generalized functions are then used to study the wave equation, diffusion equation, and diffraction equation. Real-world applications of Fourier analysis are described in the chapter on musical tones. A valuable reference on Fourier analysis for a variety of students and scientific professionals, including mathematicians, physicists, chemists, geologists, electrical engineers, mechanical engineers, and others.