Author: Sinai Robins
Publisher: American Mathematical Society
ISBN: 1470470330
Category : Mathematics
Languages : en
Pages : 352
Book Description
This book offers a gentle introduction to the geometry of numbers from a modern Fourier-analytic point of view. One of the main themes is the transfer of geometric knowledge of a polytope to analytic knowledge of its Fourier transform. The Fourier transform preserves all of the information of a polytope, and turns its geometry into analysis. The approach is unique, and streamlines this emerging field by presenting new simple proofs of some basic results of the field. In addition, each chapter is fitted with many exercises, some of which have solutions and hints in an appendix. Thus, an individual learner will have an easier time absorbing the material on their own, or as part of a class. Overall, this book provides an introduction appropriate for an advanced undergraduate, a beginning graduate student, or researcher interested in exploring this important expanding field.
Fourier Analysis on Polytopes and the Geometry of Numbers
Author: Sinai Robins
Publisher: American Mathematical Society
ISBN: 1470470330
Category : Mathematics
Languages : en
Pages : 352
Book Description
This book offers a gentle introduction to the geometry of numbers from a modern Fourier-analytic point of view. One of the main themes is the transfer of geometric knowledge of a polytope to analytic knowledge of its Fourier transform. The Fourier transform preserves all of the information of a polytope, and turns its geometry into analysis. The approach is unique, and streamlines this emerging field by presenting new simple proofs of some basic results of the field. In addition, each chapter is fitted with many exercises, some of which have solutions and hints in an appendix. Thus, an individual learner will have an easier time absorbing the material on their own, or as part of a class. Overall, this book provides an introduction appropriate for an advanced undergraduate, a beginning graduate student, or researcher interested in exploring this important expanding field.
Publisher: American Mathematical Society
ISBN: 1470470330
Category : Mathematics
Languages : en
Pages : 352
Book Description
This book offers a gentle introduction to the geometry of numbers from a modern Fourier-analytic point of view. One of the main themes is the transfer of geometric knowledge of a polytope to analytic knowledge of its Fourier transform. The Fourier transform preserves all of the information of a polytope, and turns its geometry into analysis. The approach is unique, and streamlines this emerging field by presenting new simple proofs of some basic results of the field. In addition, each chapter is fitted with many exercises, some of which have solutions and hints in an appendix. Thus, an individual learner will have an easier time absorbing the material on their own, or as part of a class. Overall, this book provides an introduction appropriate for an advanced undergraduate, a beginning graduate student, or researcher interested in exploring this important expanding field.
Computing the Continuous Discretely
Author: Matthias Beck
Publisher: Springer
ISBN: 1493929690
Category : Mathematics
Languages : en
Pages : 295
Book Description
This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart’s theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships between the continuous volume of a polytope and its discrete volume? Reviews of the first edition: “You owe it to yourself to pick up a copy of Computing the Continuous Discretely to read about a number of interesting problems in geometry, number theory, and combinatorics.” — MAA Reviews “The book is written as an accessible and engaging textbook, with many examples, historical notes, pithy quotes, commentary integrating the mate rial, exercises, open problems and an extensive bibliography.” — Zentralblatt MATH “This beautiful book presents, at a level suitable for advanced undergraduates, a fairly complete introduction to the problem of counting lattice points inside a convex polyhedron.” — Mathematical Reviews “Many departments recognize the need for capstone courses in which graduating students can see the tools they have acquired come together in some satisfying way. Beck and Robins have written the perfect text for such a course.” — CHOICE
Publisher: Springer
ISBN: 1493929690
Category : Mathematics
Languages : en
Pages : 295
Book Description
This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart’s theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships between the continuous volume of a polytope and its discrete volume? Reviews of the first edition: “You owe it to yourself to pick up a copy of Computing the Continuous Discretely to read about a number of interesting problems in geometry, number theory, and combinatorics.” — MAA Reviews “The book is written as an accessible and engaging textbook, with many examples, historical notes, pithy quotes, commentary integrating the mate rial, exercises, open problems and an extensive bibliography.” — Zentralblatt MATH “This beautiful book presents, at a level suitable for advanced undergraduates, a fairly complete introduction to the problem of counting lattice points inside a convex polyhedron.” — Mathematical Reviews “Many departments recognize the need for capstone courses in which graduating students can see the tools they have acquired come together in some satisfying way. Beck and Robins have written the perfect text for such a course.” — CHOICE
The Mathematics of Cellular Automata
Author: Jane Hawkins
Publisher: American Mathematical Society
ISBN: 1470475375
Category : Mathematics
Languages : en
Pages : 247
Book Description
This textbook offers a rigorous mathematical introduction to cellular automata (CA). Numerous colorful graphics illustrate the many intriguing phenomena, inviting undergraduates to step into the rich field of symbolic dynamics. Beginning with a brief history, the first half of the book establishes the mathematical foundations of cellular automata. After recapping the essentials from advanced calculus, the chapters that follow introduce symbolic spaces, equicontinuity, and attractors. More advanced topics include the Garden of Eden theorem and Conway's Game of Life, and a chapter on stochastic CA showcases a model of virus spread. Exercises and labs end each chapter, covering a range of applications, both mathematical and physical. Designed for undergraduates studying mathematics and related areas, the text provides ample opportunities for end-of-semester projects or further study. Computer use for the labs is largely optional, providing flexibility for different preferences and resources. Knowledge of advanced calculus and linear algebra is essential, while a course in real analysis would be ideal.
Publisher: American Mathematical Society
ISBN: 1470475375
Category : Mathematics
Languages : en
Pages : 247
Book Description
This textbook offers a rigorous mathematical introduction to cellular automata (CA). Numerous colorful graphics illustrate the many intriguing phenomena, inviting undergraduates to step into the rich field of symbolic dynamics. Beginning with a brief history, the first half of the book establishes the mathematical foundations of cellular automata. After recapping the essentials from advanced calculus, the chapters that follow introduce symbolic spaces, equicontinuity, and attractors. More advanced topics include the Garden of Eden theorem and Conway's Game of Life, and a chapter on stochastic CA showcases a model of virus spread. Exercises and labs end each chapter, covering a range of applications, both mathematical and physical. Designed for undergraduates studying mathematics and related areas, the text provides ample opportunities for end-of-semester projects or further study. Computer use for the labs is largely optional, providing flexibility for different preferences and resources. Knowledge of advanced calculus and linear algebra is essential, while a course in real analysis would be ideal.
Fourier Analysis on Number Fields
Author: Dinakar Ramakrishnan
Publisher: Springer Science & Business Media
ISBN: 9780387984360
Category : Mathematics
Languages : en
Pages : 380
Book Description
A modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasising harmonic analysis on topological groups. The main goal is to cover John Tates visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries -- technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the existing treatments of Tates thesis are somewhat terse and less than complete, the intent here is to be more leisurely, more comprehensive, and more comprehensible. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups. The text addresses students who have taken a year of graduate-level course in algebra, analysis, and topology. Moreover, the work will act as a good reference for working mathematicians interested in any of these fields.
Publisher: Springer Science & Business Media
ISBN: 9780387984360
Category : Mathematics
Languages : en
Pages : 380
Book Description
A modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasising harmonic analysis on topological groups. The main goal is to cover John Tates visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries -- technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the existing treatments of Tates thesis are somewhat terse and less than complete, the intent here is to be more leisurely, more comprehensive, and more comprehensible. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups. The text addresses students who have taken a year of graduate-level course in algebra, analysis, and topology. Moreover, the work will act as a good reference for working mathematicians interested in any of these fields.
Geometric Applications of Fourier Series and Spherical Harmonics
Author: H. Groemer
Publisher: Cambridge University Press
ISBN: 0521473187
Category : Mathematics
Languages : en
Pages : 343
Book Description
This book provides a comprehensive presentation of geometric results, primarily from the theory of convex sets, that have been proved by the use of Fourier series or spherical harmonics. An important feature of the book is that all necessary tools from the classical theory of spherical harmonics are presented with full proofs. These tools are used to prove geometric inequalities, stability results, uniqueness results for projections and intersections by hyperplanes or half-spaces and characterisations of rotors in convex polytopes. Again, full proofs are given. To make the treatment as self-contained as possible the book begins with background material in analysis and the geometry of convex sets. This treatise will be welcomed both as an introduction to the subject and as a reference book for pure and applied mathematics.
Publisher: Cambridge University Press
ISBN: 0521473187
Category : Mathematics
Languages : en
Pages : 343
Book Description
This book provides a comprehensive presentation of geometric results, primarily from the theory of convex sets, that have been proved by the use of Fourier series or spherical harmonics. An important feature of the book is that all necessary tools from the classical theory of spherical harmonics are presented with full proofs. These tools are used to prove geometric inequalities, stability results, uniqueness results for projections and intersections by hyperplanes or half-spaces and characterisations of rotors in convex polytopes. Again, full proofs are given. To make the treatment as self-contained as possible the book begins with background material in analysis and the geometry of convex sets. This treatise will be welcomed both as an introduction to the subject and as a reference book for pure and applied mathematics.
Fourier Analysis and Its Applications
Author: Anders Vretblad
Publisher: Springer Science & Business Media
ISBN: 0387217231
Category : Mathematics
Languages : en
Pages : 275
Book Description
A carefully prepared account of the basic ideas in Fourier analysis and its applications to the study of partial differential equations. The author succeeds to make his exposition accessible to readers with a limited background, for example, those not acquainted with the Lebesgue integral. Readers should be familiar with calculus, linear algebra, and complex numbers. At the same time, the author has managed to include discussions of more advanced topics such as the Gibbs phenomenon, distributions, Sturm-Liouville theory, Cesaro summability and multi-dimensional Fourier analysis, topics which one usually does not find in books at this level. A variety of worked examples and exercises will help the readers to apply their newly acquired knowledge.
Publisher: Springer Science & Business Media
ISBN: 0387217231
Category : Mathematics
Languages : en
Pages : 275
Book Description
A carefully prepared account of the basic ideas in Fourier analysis and its applications to the study of partial differential equations. The author succeeds to make his exposition accessible to readers with a limited background, for example, those not acquainted with the Lebesgue integral. Readers should be familiar with calculus, linear algebra, and complex numbers. At the same time, the author has managed to include discussions of more advanced topics such as the Gibbs phenomenon, distributions, Sturm-Liouville theory, Cesaro summability and multi-dimensional Fourier analysis, topics which one usually does not find in books at this level. A variety of worked examples and exercises will help the readers to apply their newly acquired knowledge.
Modern Fourier Analysis
Author: Loukas Grafakos
Publisher: Springer Science & Business Media
ISBN: 0387094342
Category : Mathematics
Languages : en
Pages : 517
Book Description
The great response to the publication of the book Classical and Modern Fourier Analysishasbeenverygratifying.IamdelightedthatSpringerhasofferedtopublish the second edition of this book in two volumes: Classical Fourier Analysis, 2nd Edition, and Modern Fourier Analysis, 2nd Edition. These volumes are mainly addressed to graduate students who wish to study Fourier analysis. This second volume is intended to serve as a text for a seco- semester course in the subject. It is designed to be a continuation of the rst v- ume. Chapters 1–5 in the rst volume contain Lebesgue spaces, Lorentz spaces and interpolation, maximal functions, Fourier transforms and distributions, an introd- tion to Fourier analysis on the n-torus, singular integrals of convolution type, and Littlewood–Paley theory. Armed with the knowledgeof this material, in this volume,the reader encounters more advanced topics in Fourier analysis whose development has led to important theorems. These theorems are proved in great detail and their proofs are organized to present the ow of ideas. The exercises at the end of each section enrich the material of the corresponding section and provide an opportunity to develop ad- tional intuition and deeper comprehension. The historical notes in each chapter are intended to provide an account of past research but also to suggest directions for further investigation. The auxiliary results referred to the appendix can be located in the rst volume.
Publisher: Springer Science & Business Media
ISBN: 0387094342
Category : Mathematics
Languages : en
Pages : 517
Book Description
The great response to the publication of the book Classical and Modern Fourier Analysishasbeenverygratifying.IamdelightedthatSpringerhasofferedtopublish the second edition of this book in two volumes: Classical Fourier Analysis, 2nd Edition, and Modern Fourier Analysis, 2nd Edition. These volumes are mainly addressed to graduate students who wish to study Fourier analysis. This second volume is intended to serve as a text for a seco- semester course in the subject. It is designed to be a continuation of the rst v- ume. Chapters 1–5 in the rst volume contain Lebesgue spaces, Lorentz spaces and interpolation, maximal functions, Fourier transforms and distributions, an introd- tion to Fourier analysis on the n-torus, singular integrals of convolution type, and Littlewood–Paley theory. Armed with the knowledgeof this material, in this volume,the reader encounters more advanced topics in Fourier analysis whose development has led to important theorems. These theorems are proved in great detail and their proofs are organized to present the ow of ideas. The exercises at the end of each section enrich the material of the corresponding section and provide an opportunity to develop ad- tional intuition and deeper comprehension. The historical notes in each chapter are intended to provide an account of past research but also to suggest directions for further investigation. The auxiliary results referred to the appendix can be located in the rst volume.
Convexity from the Geometric Point of View
Author: Vitor Balestro
Publisher: Springer Nature
ISBN: 3031505077
Category :
Languages : en
Pages : 1195
Book Description
Publisher: Springer Nature
ISBN: 3031505077
Category :
Languages : en
Pages : 1195
Book Description
Convex and Discrete Geometry
Author: Peter M. Gruber
Publisher: Springer Science & Business Media
ISBN: 3540711333
Category : Mathematics
Languages : en
Pages : 590
Book Description
Convex and Discrete Geometry is an area of mathematics situated between analysis, geometry and discrete mathematics with numerous relations to other subdisciplines. This book provides a comprehensive overview of major results, methods and ideas of convex and discrete geometry and its applications. Besides being a graduate-level introduction to the field, it is a practical source of information and orientation for convex geometers, and useful to people working in the applied fields.
Publisher: Springer Science & Business Media
ISBN: 3540711333
Category : Mathematics
Languages : en
Pages : 590
Book Description
Convex and Discrete Geometry is an area of mathematics situated between analysis, geometry and discrete mathematics with numerous relations to other subdisciplines. This book provides a comprehensive overview of major results, methods and ideas of convex and discrete geometry and its applications. Besides being a graduate-level introduction to the field, it is a practical source of information and orientation for convex geometers, and useful to people working in the applied fields.
p-adic Numbers, p-adic Analysis, and Zeta-Functions
Author: Neal Koblitz
Publisher: Springer Science & Business Media
ISBN: 1461211123
Category : Mathematics
Languages : en
Pages : 163
Book Description
The first edition of this work has become the standard introduction to the theory of p-adic numbers at both the advanced undergraduate and beginning graduate level. This second edition includes a deeper treatment of p-adic functions in Ch. 4 to include the Iwasawa logarithm and the p-adic gamma-function, the rearrangement and addition of some exercises, the inclusion of an extensive appendix of answers and hints to the exercises, as well as numerous clarifications.
Publisher: Springer Science & Business Media
ISBN: 1461211123
Category : Mathematics
Languages : en
Pages : 163
Book Description
The first edition of this work has become the standard introduction to the theory of p-adic numbers at both the advanced undergraduate and beginning graduate level. This second edition includes a deeper treatment of p-adic functions in Ch. 4 to include the Iwasawa logarithm and the p-adic gamma-function, the rearrangement and addition of some exercises, the inclusion of an extensive appendix of answers and hints to the exercises, as well as numerous clarifications.