Author: Shanzhen Lu
Publisher: World Scientific
ISBN: 9789810221584
Category : Mathematics
Languages : en
Pages : 236
Book Description
This book introduces the real variable theory of HP spaces briefly and concentrates on its applications to various aspects of analysis fields. It consists of four chapters. Chapter 1 introduces the basic theory of Fefferman-Stein on real HP spaces. Chapter 2 describes the atomic decomposition theory and the molecular decomposition theory of real HP spaces. In addition, the dual spaces of real HP spaces, the interpolation of operators in HP spaces, and the interpolation of HP spaces are also discussed in Chapter 2. The properties of several basic operators in HP spaces are discussed in Chapter 3 in detail. Among them, some basic results are contributed by Chinese mathematicians, such as the decomposition theory of weak HP spaces and its applications to the study on the sharpness of singular integrals, a new method to deal with the elliptic Riesz means in HP spaces, and the transference theorem of HP-multipliers etc. The last chapter is devoted to applications of real HP spaces to approximation theory.
Four Lectures on Real Hp? Spaces
Author: Shanzhen Lu
Publisher: World Scientific
ISBN: 9789810221584
Category : Mathematics
Languages : en
Pages : 236
Book Description
This book introduces the real variable theory of HP spaces briefly and concentrates on its applications to various aspects of analysis fields. It consists of four chapters. Chapter 1 introduces the basic theory of Fefferman-Stein on real HP spaces. Chapter 2 describes the atomic decomposition theory and the molecular decomposition theory of real HP spaces. In addition, the dual spaces of real HP spaces, the interpolation of operators in HP spaces, and the interpolation of HP spaces are also discussed in Chapter 2. The properties of several basic operators in HP spaces are discussed in Chapter 3 in detail. Among them, some basic results are contributed by Chinese mathematicians, such as the decomposition theory of weak HP spaces and its applications to the study on the sharpness of singular integrals, a new method to deal with the elliptic Riesz means in HP spaces, and the transference theorem of HP-multipliers etc. The last chapter is devoted to applications of real HP spaces to approximation theory.
Publisher: World Scientific
ISBN: 9789810221584
Category : Mathematics
Languages : en
Pages : 236
Book Description
This book introduces the real variable theory of HP spaces briefly and concentrates on its applications to various aspects of analysis fields. It consists of four chapters. Chapter 1 introduces the basic theory of Fefferman-Stein on real HP spaces. Chapter 2 describes the atomic decomposition theory and the molecular decomposition theory of real HP spaces. In addition, the dual spaces of real HP spaces, the interpolation of operators in HP spaces, and the interpolation of HP spaces are also discussed in Chapter 2. The properties of several basic operators in HP spaces are discussed in Chapter 3 in detail. Among them, some basic results are contributed by Chinese mathematicians, such as the decomposition theory of weak HP spaces and its applications to the study on the sharpness of singular integrals, a new method to deal with the elliptic Riesz means in HP spaces, and the transference theorem of HP-multipliers etc. The last chapter is devoted to applications of real HP spaces to approximation theory.
Four Lectures on Relativity and Space
Author: Charles Proteus Steinmetz
Publisher:
ISBN:
Category : Relativity (Physics)
Languages : en
Pages : 144
Book Description
Batcheller Collection.
Publisher:
ISBN:
Category : Relativity (Physics)
Languages : en
Pages : 144
Book Description
Batcheller Collection.
Fundamentals of Fourier Analysis
Author: Loukas Grafakos
Publisher: Springer Nature
ISBN: 3031565002
Category :
Languages : en
Pages : 416
Book Description
Publisher: Springer Nature
ISBN: 3031565002
Category :
Languages : en
Pages : 416
Book Description
Fourier Analysis
Author: Javier Duoandikoetxea Zuazo
Publisher: American Mathematical Soc.
ISBN: 9780821883846
Category : Mathematics
Languages : en
Pages : 248
Book Description
Fourier analysis encompasses a variety of perspectives and techniques. This volume presents the real variable methods of Fourier analysis introduced by Calderón and Zygmund. The text was born from a graduate course taught at the Universidad Autonoma de Madrid and incorporates lecture notes from a course taught by José Luis Rubio de Francia at the same university. Motivated by the study of Fourier series and integrals, classical topics are introduced, such as the Hardy-Littlewood maximal function and the Hilbert transform. The remaining portions of the text are devoted to the study of singular integral operators and multipliers. Both classical aspects of the theory and more recent developments, such as weighted inequalities, H1, BMO spaces, and the T1 theorem, are discussed. Chapter 1 presents a review of Fourier series and integrals; Chapters 2 and 3 introduce two operators that are basic to the field: the Hardy-Littlewood maximal function and the Hilbert transform in higher dimensions. Chapters 4 and 5 discuss singular integrals, including modern generalizations. Chapter 6 studies the relationship between H1, BMO, and singular integrals; Chapter 7 presents the elementary theory of weighted norm inequalities. Chapter 8 discusses Littlewood-Paley theory, which had developments that resulted in a number of applications. The final chapter concludes with an important result, the T1 theorem, which has been of crucial importance in the field. This volume has been updated and translated from the original Spanish edition (1995). Minor changes have been made to the core of the book; however, the sections, "Notes and Further Results" have been considerably expanded and incorporate new topics, results, and references. It is geared toward graduate students seeking a concise introduction to the main aspects of the classical theory of singular operators and multipliers. Prerequisites include basic knowledge in Lebesgue integrals and functional analysis.
Publisher: American Mathematical Soc.
ISBN: 9780821883846
Category : Mathematics
Languages : en
Pages : 248
Book Description
Fourier analysis encompasses a variety of perspectives and techniques. This volume presents the real variable methods of Fourier analysis introduced by Calderón and Zygmund. The text was born from a graduate course taught at the Universidad Autonoma de Madrid and incorporates lecture notes from a course taught by José Luis Rubio de Francia at the same university. Motivated by the study of Fourier series and integrals, classical topics are introduced, such as the Hardy-Littlewood maximal function and the Hilbert transform. The remaining portions of the text are devoted to the study of singular integral operators and multipliers. Both classical aspects of the theory and more recent developments, such as weighted inequalities, H1, BMO spaces, and the T1 theorem, are discussed. Chapter 1 presents a review of Fourier series and integrals; Chapters 2 and 3 introduce two operators that are basic to the field: the Hardy-Littlewood maximal function and the Hilbert transform in higher dimensions. Chapters 4 and 5 discuss singular integrals, including modern generalizations. Chapter 6 studies the relationship between H1, BMO, and singular integrals; Chapter 7 presents the elementary theory of weighted norm inequalities. Chapter 8 discusses Littlewood-Paley theory, which had developments that resulted in a number of applications. The final chapter concludes with an important result, the T1 theorem, which has been of crucial importance in the field. This volume has been updated and translated from the original Spanish edition (1995). Minor changes have been made to the core of the book; however, the sections, "Notes and Further Results" have been considerably expanded and incorporate new topics, results, and references. It is geared toward graduate students seeking a concise introduction to the main aspects of the classical theory of singular operators and multipliers. Prerequisites include basic knowledge in Lebesgue integrals and functional analysis.
Fourier Analysis
Author: Javier Duoandikoetxea
Publisher: American Mathematical Society
ISBN: 1470476894
Category : Mathematics
Languages : en
Pages : 242
Book Description
Fourier analysis encompasses a variety of perspectives and techniques. This volume presents the real variable methods of Fourier analysis introduced by Calderón and Zygmund. The text was born from a graduate course taught at the Universidad Autónoma de Madrid and incorporates lecture notes from a course taught by José Luis Rubio de Francia at the same university. Motivated by the study of Fourier series and integrals, classical topics are introduced, such as the Hardy-Littlewood maximal function and the Hilbert transform. The remaining portions of the text are devoted to the study of singular integral operators and multipliers. Both classical aspects of the theory and more recent developments, such as weighted inequalities, $H^1$, $BMO$ spaces, and the $T1$ theorem, are discussed. Chapter 1 presents a review of Fourier series and integrals; Chapters 2 and 3 introduce two operators that are basic to the field: the Hardy-Littlewood maximal function and the Hilbert transform. Chapters 4 and 5 discuss singular integrals, including modern generalizations. Chapter 6 studies the relationship between $H^1$, $BMO$, and singular integrals; Chapter 7 presents the elementary theory of weighted norm inequalities. Chapter 8 discusses Littlewood-Paley theory, which had developments that resulted in a number of applications. The final chapter concludes with an important result, the $T1$ theorem, which has been of crucial importance in the field. This volume has been updated and translated from the Spanish edition that was published in 1995. Minor changes have been made to the core of the book; however, the sections, “Notes and Further Results” have been considerably expanded and incorporate new topics, results, and references. It is geared toward graduate students seeking a concise introduction to the main aspects of the classical theory of singular operators and multipliers. Prerequisites include basic knowledge in Lebesgue integrals and functional analysis.
Publisher: American Mathematical Society
ISBN: 1470476894
Category : Mathematics
Languages : en
Pages : 242
Book Description
Fourier analysis encompasses a variety of perspectives and techniques. This volume presents the real variable methods of Fourier analysis introduced by Calderón and Zygmund. The text was born from a graduate course taught at the Universidad Autónoma de Madrid and incorporates lecture notes from a course taught by José Luis Rubio de Francia at the same university. Motivated by the study of Fourier series and integrals, classical topics are introduced, such as the Hardy-Littlewood maximal function and the Hilbert transform. The remaining portions of the text are devoted to the study of singular integral operators and multipliers. Both classical aspects of the theory and more recent developments, such as weighted inequalities, $H^1$, $BMO$ spaces, and the $T1$ theorem, are discussed. Chapter 1 presents a review of Fourier series and integrals; Chapters 2 and 3 introduce two operators that are basic to the field: the Hardy-Littlewood maximal function and the Hilbert transform. Chapters 4 and 5 discuss singular integrals, including modern generalizations. Chapter 6 studies the relationship between $H^1$, $BMO$, and singular integrals; Chapter 7 presents the elementary theory of weighted norm inequalities. Chapter 8 discusses Littlewood-Paley theory, which had developments that resulted in a number of applications. The final chapter concludes with an important result, the $T1$ theorem, which has been of crucial importance in the field. This volume has been updated and translated from the Spanish edition that was published in 1995. Minor changes have been made to the core of the book; however, the sections, “Notes and Further Results” have been considerably expanded and incorporate new topics, results, and references. It is geared toward graduate students seeking a concise introduction to the main aspects of the classical theory of singular operators and multipliers. Prerequisites include basic knowledge in Lebesgue integrals and functional analysis.
Modern Fourier Analysis
Author: Loukas Grafakos
Publisher: Springer
ISBN: 1493912305
Category : Mathematics
Languages : en
Pages : 636
Book Description
This text is aimed at graduate students in mathematics and to interested researchers who wish to acquire an in depth understanding of Euclidean Harmonic analysis. The text covers modern topics and techniques in function spaces, atomic decompositions, singular integrals of nonconvolution type and the boundedness and convergence of Fourier series and integrals. The exposition and style are designed to stimulate further study and promote research. Historical information and references are included at the end of each chapter. This third edition includes a new chapter entitled "Multilinear Harmonic Analysis" which focuses on topics related to multilinear operators and their applications. Sections 1.1 and 1.2 are also new in this edition. Numerous corrections have been made to the text from the previous editions and several improvements have been incorporated, such as the adoption of clear and elegant statements. A few more exercises have been added with relevant hints when necessary.
Publisher: Springer
ISBN: 1493912305
Category : Mathematics
Languages : en
Pages : 636
Book Description
This text is aimed at graduate students in mathematics and to interested researchers who wish to acquire an in depth understanding of Euclidean Harmonic analysis. The text covers modern topics and techniques in function spaces, atomic decompositions, singular integrals of nonconvolution type and the boundedness and convergence of Fourier series and integrals. The exposition and style are designed to stimulate further study and promote research. Historical information and references are included at the end of each chapter. This third edition includes a new chapter entitled "Multilinear Harmonic Analysis" which focuses on topics related to multilinear operators and their applications. Sections 1.1 and 1.2 are also new in this edition. Numerous corrections have been made to the text from the previous editions and several improvements have been incorporated, such as the adoption of clear and elegant statements. A few more exercises have been added with relevant hints when necessary.
Convergence and Summability of Fourier Transforms and Hardy Spaces
Author: Ferenc Weisz
Publisher: Birkhäuser
ISBN: 3319568140
Category : Mathematics
Languages : en
Pages : 446
Book Description
This book investigates the convergence and summability of both one-dimensional and multi-dimensional Fourier transforms, as well as the theory of Hardy spaces. To do so, it studies a general summability method known as theta-summation, which encompasses all the well-known summability methods, such as the Fejér, Riesz, Weierstrass, Abel, Picard, Bessel and Rogosinski summations. Following on the classic books by Bary (1964) and Zygmund (1968), this is the first book that considers strong summability introduced by current methodology. A further unique aspect is that the Lebesgue points are also studied in the theory of multi-dimensional summability. In addition to classical results, results from the past 20-30 years – normally only found in scattered research papers – are also gathered and discussed, offering readers a convenient “one-stop” source to support their work. As such, the book will be useful for researchers, graduate and postgraduate students alike.
Publisher: Birkhäuser
ISBN: 3319568140
Category : Mathematics
Languages : en
Pages : 446
Book Description
This book investigates the convergence and summability of both one-dimensional and multi-dimensional Fourier transforms, as well as the theory of Hardy spaces. To do so, it studies a general summability method known as theta-summation, which encompasses all the well-known summability methods, such as the Fejér, Riesz, Weierstrass, Abel, Picard, Bessel and Rogosinski summations. Following on the classic books by Bary (1964) and Zygmund (1968), this is the first book that considers strong summability introduced by current methodology. A further unique aspect is that the Lebesgue points are also studied in the theory of multi-dimensional summability. In addition to classical results, results from the past 20-30 years – normally only found in scattered research papers – are also gathered and discussed, offering readers a convenient “one-stop” source to support their work. As such, the book will be useful for researchers, graduate and postgraduate students alike.
Lectures on Analytic Function Spaces and their Applications
Author: Javad Mashreghi
Publisher: Springer Nature
ISBN: 3031335724
Category : Mathematics
Languages : en
Pages : 426
Book Description
The focus program on Analytic Function Spaces and their Applications took place at Fields Institute from July 1st to December 31st, 2021. Hilbert spaces of analytic functions form one of the pillars of complex analysis. These spaces have a rich structure and for more than a century have been studied by many prominent mathematicians. They have essential applications in other fields of mathematics and engineering. The most important Hilbert space of analytic functions is the Hardy class H2. However, its close cousins—the Bergman space A2, the Dirichlet space D, the model subspaces Kt, and the de Branges-Rovnyak spaces H(b)—have also garnered attention in recent decades. Leading experts on function spaces gathered and discussed new achievements and future venues of research on analytic function spaces, their operators, and their applications in other domains. With over 250 hours of lectures by prominent mathematicians, the program spanned a wide variety of topics. More explicitly, there were courses and workshops on Interpolation and Sampling, Riesz Bases, Frames and Signal Processing, Bounded Mean Oscillation, de Branges-Rovnyak Spaces, Blaschke Products and Inner Functions, and Convergence of Scattering Data and Non-linear Fourier Transform, among others. At the end of each week, there was a high-profile colloquium talk on the current topic. The program also contained two advanced courses on Schramm Loewner Evolution and Lattice Models and Reproducing Kernel Hilbert Space of Analytic Functions. This volume features the courses given on Hardy Spaces, Dirichlet Spaces, Bergman Spaces, Model Spaces, Operators on Function Spaces, Truncated Toeplitz Operators, Semigroups of weighted composition operators on spaces of holomorphic functions, the Corona Problem, Non-commutative Function Theory, and Drury-Arveson Space. This volume is a valuable resource for researchers interested in analytic function spaces.
Publisher: Springer Nature
ISBN: 3031335724
Category : Mathematics
Languages : en
Pages : 426
Book Description
The focus program on Analytic Function Spaces and their Applications took place at Fields Institute from July 1st to December 31st, 2021. Hilbert spaces of analytic functions form one of the pillars of complex analysis. These spaces have a rich structure and for more than a century have been studied by many prominent mathematicians. They have essential applications in other fields of mathematics and engineering. The most important Hilbert space of analytic functions is the Hardy class H2. However, its close cousins—the Bergman space A2, the Dirichlet space D, the model subspaces Kt, and the de Branges-Rovnyak spaces H(b)—have also garnered attention in recent decades. Leading experts on function spaces gathered and discussed new achievements and future venues of research on analytic function spaces, their operators, and their applications in other domains. With over 250 hours of lectures by prominent mathematicians, the program spanned a wide variety of topics. More explicitly, there were courses and workshops on Interpolation and Sampling, Riesz Bases, Frames and Signal Processing, Bounded Mean Oscillation, de Branges-Rovnyak Spaces, Blaschke Products and Inner Functions, and Convergence of Scattering Data and Non-linear Fourier Transform, among others. At the end of each week, there was a high-profile colloquium talk on the current topic. The program also contained two advanced courses on Schramm Loewner Evolution and Lattice Models and Reproducing Kernel Hilbert Space of Analytic Functions. This volume features the courses given on Hardy Spaces, Dirichlet Spaces, Bergman Spaces, Model Spaces, Operators on Function Spaces, Truncated Toeplitz Operators, Semigroups of weighted composition operators on spaces of holomorphic functions, the Corona Problem, Non-commutative Function Theory, and Drury-Arveson Space. This volume is a valuable resource for researchers interested in analytic function spaces.
Lebesgue Points and Summability of Higher Dimensional Fourier Series
Author: Ferenc Weisz
Publisher: Springer Nature
ISBN: 3030746364
Category : Mathematics
Languages : en
Pages : 299
Book Description
This monograph presents the summability of higher dimensional Fourier series, and generalizes the concept of Lebesgue points. Focusing on Fejér and Cesàro summability, as well as theta-summation, readers will become more familiar with a wide variety of summability methods. Within the theory of higher dimensional summability of Fourier series, the book also provides a much-needed simple proof of Lebesgue’s theorem, filling a gap in the literature. Recent results and real-world applications are highlighted as well, making this a timely resource. The book is structured into four chapters, prioritizing clarity throughout. Chapter One covers basic results from the one-dimensional Fourier series, and offers a clear proof of the Lebesgue theorem. In Chapter Two, convergence and boundedness results for the lq-summability are presented. The restricted and unrestricted rectangular summability are provided in Chapter Three, as well as the sufficient and necessary condition for the norm convergence of the rectangular theta-means. Chapter Four then introduces six types of Lebesgue points for higher dimensional functions. Lebesgue Points and Summability of Higher Dimensional Fourier Series will appeal to researchers working in mathematical analysis, particularly those interested in Fourier and harmonic analysis. Researchers in applied fields will also find this useful.
Publisher: Springer Nature
ISBN: 3030746364
Category : Mathematics
Languages : en
Pages : 299
Book Description
This monograph presents the summability of higher dimensional Fourier series, and generalizes the concept of Lebesgue points. Focusing on Fejér and Cesàro summability, as well as theta-summation, readers will become more familiar with a wide variety of summability methods. Within the theory of higher dimensional summability of Fourier series, the book also provides a much-needed simple proof of Lebesgue’s theorem, filling a gap in the literature. Recent results and real-world applications are highlighted as well, making this a timely resource. The book is structured into four chapters, prioritizing clarity throughout. Chapter One covers basic results from the one-dimensional Fourier series, and offers a clear proof of the Lebesgue theorem. In Chapter Two, convergence and boundedness results for the lq-summability are presented. The restricted and unrestricted rectangular summability are provided in Chapter Three, as well as the sufficient and necessary condition for the norm convergence of the rectangular theta-means. Chapter Four then introduces six types of Lebesgue points for higher dimensional functions. Lebesgue Points and Summability of Higher Dimensional Fourier Series will appeal to researchers working in mathematical analysis, particularly those interested in Fourier and harmonic analysis. Researchers in applied fields will also find this useful.
Martingale Hardy Spaces and Summability of One-Dimensional Vilenkin-Fourier Series
Author: Lars-Erik Persson
Publisher: Springer Nature
ISBN: 3031144597
Category : Mathematics
Languages : en
Pages : 633
Book Description
This book discusses, develops and applies the theory of Vilenkin-Fourier series connected to modern harmonic analysis. The classical theory of Fourier series deals with decomposition of a function into sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) functions are rectangular waves. Such waves have already been used frequently in the theory of signal transmission, multiplexing, filtering, image enhancement, code theory, digital signal processing and pattern recognition. The development of the theory of Vilenkin-Fourier series has been strongly influenced by the classical theory of trigonometric series. Because of this it is inevitable to compare results of Vilenkin-Fourier series to those on trigonometric series. There are many similarities between these theories, but there exist differences also. Much of these can be explained by modern abstract harmonic analysis, which studies orthonormal systems from the point of view of the structure of a topological group. The first part of the book can be used as an introduction to the subject, and the following chapters summarize the most recent research in this fascinating area and can be read independently. Each chapter concludes with historical remarks and open questions. The book will appeal to researchers working in Fourier and more broad harmonic analysis and will inspire them for their own and their students' research. Moreover, researchers in applied fields will appreciate it as a sourcebook far beyond the traditional mathematical domains.
Publisher: Springer Nature
ISBN: 3031144597
Category : Mathematics
Languages : en
Pages : 633
Book Description
This book discusses, develops and applies the theory of Vilenkin-Fourier series connected to modern harmonic analysis. The classical theory of Fourier series deals with decomposition of a function into sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) functions are rectangular waves. Such waves have already been used frequently in the theory of signal transmission, multiplexing, filtering, image enhancement, code theory, digital signal processing and pattern recognition. The development of the theory of Vilenkin-Fourier series has been strongly influenced by the classical theory of trigonometric series. Because of this it is inevitable to compare results of Vilenkin-Fourier series to those on trigonometric series. There are many similarities between these theories, but there exist differences also. Much of these can be explained by modern abstract harmonic analysis, which studies orthonormal systems from the point of view of the structure of a topological group. The first part of the book can be used as an introduction to the subject, and the following chapters summarize the most recent research in this fascinating area and can be read independently. Each chapter concludes with historical remarks and open questions. The book will appeal to researchers working in Fourier and more broad harmonic analysis and will inspire them for their own and their students' research. Moreover, researchers in applied fields will appreciate it as a sourcebook far beyond the traditional mathematical domains.