Author: Klaus D Rothe
Publisher: World Scientific
ISBN: 9811221944
Category : Science
Languages : en
Pages : 350
Book Description
Based on a two-semester course held at the University of Heidelberg, Germany, this book provides an adequate resource for the lecturer and the student. The contents are primarily aimed at graduate students who wish to learn about the fundamental concepts behind constructing a Relativistic Quantum Theory of particles and fields. So it provides a comprehensive foundation for the extension to Quantum Chromodynamics and Weak Interactions, that are not included in this book.
Foundations Of Quantum Field Theory
Author: Klaus D Rothe
Publisher: World Scientific
ISBN: 9811221944
Category : Science
Languages : en
Pages : 350
Book Description
Based on a two-semester course held at the University of Heidelberg, Germany, this book provides an adequate resource for the lecturer and the student. The contents are primarily aimed at graduate students who wish to learn about the fundamental concepts behind constructing a Relativistic Quantum Theory of particles and fields. So it provides a comprehensive foundation for the extension to Quantum Chromodynamics and Weak Interactions, that are not included in this book.
Publisher: World Scientific
ISBN: 9811221944
Category : Science
Languages : en
Pages : 350
Book Description
Based on a two-semester course held at the University of Heidelberg, Germany, this book provides an adequate resource for the lecturer and the student. The contents are primarily aimed at graduate students who wish to learn about the fundamental concepts behind constructing a Relativistic Quantum Theory of particles and fields. So it provides a comprehensive foundation for the extension to Quantum Chromodynamics and Weak Interactions, that are not included in this book.
Conceptual Foundations of Quantum Field Theory
Author: Tian Yu Cao
Publisher: Cambridge University Press
ISBN: 9780521602723
Category : Science
Languages : en
Pages : 424
Book Description
Multi-author volume on the history and philosophy of physics.
Publisher: Cambridge University Press
ISBN: 9780521602723
Category : Science
Languages : en
Pages : 424
Book Description
Multi-author volume on the history and philosophy of physics.
Mathematical Foundations Of Quantum Field Theory
Author: Albert Schwarz
Publisher: World Scientific
ISBN: 981327865X
Category : Science
Languages : en
Pages : 461
Book Description
The book is very different from other books devoted to quantum field theory, both in the style of exposition and in the choice of topics. Written for both mathematicians and physicists, the author explains the theoretical formulation with a mixture of rigorous proofs and heuristic arguments; references are given for those who are looking for more details. The author is also careful to avoid ambiguous definitions and statements that can be found in some physics textbooks.In terms of topics, almost all other books are devoted to relativistic quantum field theory, conversely this book is concentrated on the material that does not depend on the assumptions of Lorentz-invariance and/or locality. It contains also a chapter discussing application of methods of quantum field theory to statistical physics, in particular to the derivation of the diagram techniques that appear in thermo-field dynamics and Keldysh formalism. It is not assumed that the reader is familiar with quantum mechanics; the book contains a short introduction to quantum mechanics for mathematicians and an appendix devoted to some mathematical facts used in the book.
Publisher: World Scientific
ISBN: 981327865X
Category : Science
Languages : en
Pages : 461
Book Description
The book is very different from other books devoted to quantum field theory, both in the style of exposition and in the choice of topics. Written for both mathematicians and physicists, the author explains the theoretical formulation with a mixture of rigorous proofs and heuristic arguments; references are given for those who are looking for more details. The author is also careful to avoid ambiguous definitions and statements that can be found in some physics textbooks.In terms of topics, almost all other books are devoted to relativistic quantum field theory, conversely this book is concentrated on the material that does not depend on the assumptions of Lorentz-invariance and/or locality. It contains also a chapter discussing application of methods of quantum field theory to statistical physics, in particular to the derivation of the diagram techniques that appear in thermo-field dynamics and Keldysh formalism. It is not assumed that the reader is familiar with quantum mechanics; the book contains a short introduction to quantum mechanics for mathematicians and an appendix devoted to some mathematical facts used in the book.
An Introduction to Non-Perturbative Foundations of Quantum Field Theory
Author: Franco Strocchi
Publisher: OUP Oxford
ISBN: 0191651346
Category : Science
Languages : en
Pages : 608
Book Description
Quantum Field Theory (QFT) has proved to be the most useful strategy for the description of elementary particle interactions and as such is regarded as a fundamental part of modern theoretical physics. In most presentations, the emphasis is on the effectiveness of the theory in producing experimentally testable predictions, which at present essentially means Perturbative QFT. However, after more than fifty years of QFT, we still are in the embarrassing situation of not knowing a single non-trivial (even non-realistic) model of QFT in 3+1 dimensions, allowing a non-perturbative control. As a reaction to these consistency problems one may take the position that they are related to our ignorance of the physics of small distances and that QFT is only an effective theory, so that radically new ideas are needed for a consistent quantum theory of relativistic interactions (in 3+1 dimensions). The book starts by discussing the conflict between locality or hyperbolicity and positivity of the energy for relativistic wave equations, which marks the origin of quantum field theory, and the mathematical problems of the perturbative expansion (canonical quantization, interaction picture, non-Fock representation, asymptotic convergence of the series etc.). The general physical principles of positivity of the energy, Poincare' covariance and locality provide a substitute for canonical quantization, qualify the non-perturbative foundation and lead to very relevant results, like the Spin-statistics theorem, TCP symmetry, a substitute for canonical quantization, non-canonical behaviour, the euclidean formulation at the basis of the functional integral approach, the non-perturbative definition of the S-matrix (LSZ, Haag-Ruelle-Buchholz theory). A characteristic feature of gauge field theories is Gauss' law constraint. It is responsible for the conflict between locality of the charged fields and positivity, it yields the superselection of the (unbroken) gauge charges, provides a non-perturbative explanation of the Higgs mechanism in the local gauges, implies the infraparticle structure of the charged particles in QED and the breaking of the Lorentz group in the charged sectors. A non-perturbative proof of the Higgs mechanism is discussed in the Coulomb gauge: the vector bosons corresponding to the broken generators are massive and their two point function dominates the Goldstone spectrum, thus excluding the occurrence of massless Goldstone bosons. The solution of the U(1) problem in QCD, the theta vacuum structure and the inevitable breaking of the chiral symmetry in each theta sector are derived solely from the topology of the gauge group, without relying on the semiclassical instanton approximation.
Publisher: OUP Oxford
ISBN: 0191651346
Category : Science
Languages : en
Pages : 608
Book Description
Quantum Field Theory (QFT) has proved to be the most useful strategy for the description of elementary particle interactions and as such is regarded as a fundamental part of modern theoretical physics. In most presentations, the emphasis is on the effectiveness of the theory in producing experimentally testable predictions, which at present essentially means Perturbative QFT. However, after more than fifty years of QFT, we still are in the embarrassing situation of not knowing a single non-trivial (even non-realistic) model of QFT in 3+1 dimensions, allowing a non-perturbative control. As a reaction to these consistency problems one may take the position that they are related to our ignorance of the physics of small distances and that QFT is only an effective theory, so that radically new ideas are needed for a consistent quantum theory of relativistic interactions (in 3+1 dimensions). The book starts by discussing the conflict between locality or hyperbolicity and positivity of the energy for relativistic wave equations, which marks the origin of quantum field theory, and the mathematical problems of the perturbative expansion (canonical quantization, interaction picture, non-Fock representation, asymptotic convergence of the series etc.). The general physical principles of positivity of the energy, Poincare' covariance and locality provide a substitute for canonical quantization, qualify the non-perturbative foundation and lead to very relevant results, like the Spin-statistics theorem, TCP symmetry, a substitute for canonical quantization, non-canonical behaviour, the euclidean formulation at the basis of the functional integral approach, the non-perturbative definition of the S-matrix (LSZ, Haag-Ruelle-Buchholz theory). A characteristic feature of gauge field theories is Gauss' law constraint. It is responsible for the conflict between locality of the charged fields and positivity, it yields the superselection of the (unbroken) gauge charges, provides a non-perturbative explanation of the Higgs mechanism in the local gauges, implies the infraparticle structure of the charged particles in QED and the breaking of the Lorentz group in the charged sectors. A non-perturbative proof of the Higgs mechanism is discussed in the Coulomb gauge: the vector bosons corresponding to the broken generators are massive and their two point function dominates the Goldstone spectrum, thus excluding the occurrence of massless Goldstone bosons. The solution of the U(1) problem in QCD, the theta vacuum structure and the inevitable breaking of the chiral symmetry in each theta sector are derived solely from the topology of the gauge group, without relying on the semiclassical instanton approximation.
Philosophical Foundations of Quantum Field Theory
Author: Harvey R. Brown
Publisher: OUP Oxford
ISBN: 9780198242895
Category : History
Languages : en
Pages : 190
Book Description
The aim of this volume of essays is to delineate and examine a range of topics which represent a systematic account of the nature and implications of QFT. The contributors, who include Michael Redhead, James T. Cushing, Paul Teller, and Gordon Fleming, approach QFT from a variety of standpoints. Part I offers two different interpretations of the value of studying the foundations of QFT as an area of separate metaphysical research. Parts II and IIIconsider the metaphysical and methodological implications of such issues as the problem of the status of virtual particles; the technique of renormalization; and the role of covariance principles. Part IV examines the mathematical foundations of QFT.
Publisher: OUP Oxford
ISBN: 9780198242895
Category : History
Languages : en
Pages : 190
Book Description
The aim of this volume of essays is to delineate and examine a range of topics which represent a systematic account of the nature and implications of QFT. The contributors, who include Michael Redhead, James T. Cushing, Paul Teller, and Gordon Fleming, approach QFT from a variety of standpoints. Part I offers two different interpretations of the value of studying the foundations of QFT as an area of separate metaphysical research. Parts II and IIIconsider the metaphysical and methodological implications of such issues as the problem of the status of virtual particles; the technique of renormalization; and the role of covariance principles. Part IV examines the mathematical foundations of QFT.
The Foundations of Quantum Theory
Author: Sol Wieder
Publisher: Elsevier
ISBN: 0323141714
Category : Science
Languages : en
Pages : 416
Book Description
The Foundations of Quantum Theory discusses the correspondence between the classical and quantum theories through the Poisson bracket-commutator analogy. The book is organized into three parts encompassing 12 chapters that cover topics on one-and many-particle systems and relativistic quantum mechanics and field theory. The first part of the book discusses the developments that formed the basis for the old quantum theory and the use of classical mechanics to develop the theory of quantum mechanics. This part includes considerable chapters on the formal theory of quantum mechanics and the wave mechanics in one- and three-dimension, with an emphasis on Coulomb problem or the hydrogen atom. The second part deals with the interacting particles and noninteracting indistinguishable particles and the material covered is fundamental to almost all branches of physics. The third part presents the pertinent equations used to illustrate the relativistic quantum mechanics and quantum field theory. This book is of value to undergraduate physics students and to students who have background in mechanics, electricity and magnetism, and modern physics.
Publisher: Elsevier
ISBN: 0323141714
Category : Science
Languages : en
Pages : 416
Book Description
The Foundations of Quantum Theory discusses the correspondence between the classical and quantum theories through the Poisson bracket-commutator analogy. The book is organized into three parts encompassing 12 chapters that cover topics on one-and many-particle systems and relativistic quantum mechanics and field theory. The first part of the book discusses the developments that formed the basis for the old quantum theory and the use of classical mechanics to develop the theory of quantum mechanics. This part includes considerable chapters on the formal theory of quantum mechanics and the wave mechanics in one- and three-dimension, with an emphasis on Coulomb problem or the hydrogen atom. The second part deals with the interacting particles and noninteracting indistinguishable particles and the material covered is fundamental to almost all branches of physics. The third part presents the pertinent equations used to illustrate the relativistic quantum mechanics and quantum field theory. This book is of value to undergraduate physics students and to students who have background in mechanics, electricity and magnetism, and modern physics.
Quantum Field Theory and the Standard Model
Author: Matthew D. Schwartz
Publisher: Cambridge University Press
ISBN: 1107034736
Category : Science
Languages : en
Pages : 869
Book Description
A modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.
Publisher: Cambridge University Press
ISBN: 1107034736
Category : Science
Languages : en
Pages : 869
Book Description
A modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.
Quantum Field Theory I
Author: Edouard B. Manoukian
Publisher: Springer
ISBN: 3319309390
Category : Science
Languages : en
Pages : 599
Book Description
This textbook covers a broad spectrum of developments in QFT, emphasizing those aspects that are now well consolidated and for which satisfactory theoretical descriptions have been provided. The book is unique in that it offers a new approach to the subject and explores many topics merely touched upon, if covered at all, in standard reference works. A detailed and largely non-technical introductory chapter traces the development of QFT from its inception in 1926. The elegant functional differential approach put forward by Schwinger, referred to as the quantum dynamical (action) principle, and its underlying theory are used systematically in order to generate the so-called vacuum-to-vacuum transition amplitude of both abelian and non-abelian gauge theories, in addition to Feynman’s well-known functional integral approach, referred to as the path-integral approach. Given the wealth of information also to be found in the abelian case, equal importance is put on both abelian and non-abelian gauge theories. Particular emphasis is placed on the concept of a quantum field and its particle content to provide an appropriate description of physical processes at high energies, where relativity becomes indispensable. Moreover, quantum mechanics implies that a wave function renormalization arises in the QFT field independent of any perturbation theory - a point not sufficiently emphasized in the literature. The book provides an overview of all the fields encountered in present high-energy physics, together with the details of the underlying derivations. Further, it presents “deep inelastic” experiments as a fundamental application of quantum chromodynamics. Though the author makes a point of deriving points in detail, the book still requires good background knowledge of quantum mechanics, including the Dirac Theory, as well as elements of the Klein-Gordon equation. The present volume sets the language, the notation and provides additional background for reading Quantum Field Theory II - Introduction to Quantum Gravity, Supersymmetry and String Theory, by the same author. Students in this field might benefit from first reading the book Quantum Theory: A Wide Spectrum (Springer, 2006), by the same author.
Publisher: Springer
ISBN: 3319309390
Category : Science
Languages : en
Pages : 599
Book Description
This textbook covers a broad spectrum of developments in QFT, emphasizing those aspects that are now well consolidated and for which satisfactory theoretical descriptions have been provided. The book is unique in that it offers a new approach to the subject and explores many topics merely touched upon, if covered at all, in standard reference works. A detailed and largely non-technical introductory chapter traces the development of QFT from its inception in 1926. The elegant functional differential approach put forward by Schwinger, referred to as the quantum dynamical (action) principle, and its underlying theory are used systematically in order to generate the so-called vacuum-to-vacuum transition amplitude of both abelian and non-abelian gauge theories, in addition to Feynman’s well-known functional integral approach, referred to as the path-integral approach. Given the wealth of information also to be found in the abelian case, equal importance is put on both abelian and non-abelian gauge theories. Particular emphasis is placed on the concept of a quantum field and its particle content to provide an appropriate description of physical processes at high energies, where relativity becomes indispensable. Moreover, quantum mechanics implies that a wave function renormalization arises in the QFT field independent of any perturbation theory - a point not sufficiently emphasized in the literature. The book provides an overview of all the fields encountered in present high-energy physics, together with the details of the underlying derivations. Further, it presents “deep inelastic” experiments as a fundamental application of quantum chromodynamics. Though the author makes a point of deriving points in detail, the book still requires good background knowledge of quantum mechanics, including the Dirac Theory, as well as elements of the Klein-Gordon equation. The present volume sets the language, the notation and provides additional background for reading Quantum Field Theory II - Introduction to Quantum Gravity, Supersymmetry and String Theory, by the same author. Students in this field might benefit from first reading the book Quantum Theory: A Wide Spectrum (Springer, 2006), by the same author.
Foundations of Quantum Mechanics
Author: Travis Norsen
Publisher: Springer
ISBN: 3319658670
Category : Science
Languages : en
Pages : 316
Book Description
Authored by an acclaimed teacher of quantum physics and philosophy, this textbook pays special attention to the aspects that many courses sweep under the carpet. Traditional courses in quantum mechanics teach students how to use the quantum formalism to make calculations. But even the best students - indeed, especially the best students - emerge rather confused about what, exactly, the theory says is going on, physically, in microscopic systems. This supplementary textbook is designed to help such students understand that they are not alone in their confusions (luminaries such as Albert Einstein, Erwin Schroedinger, and John Stewart Bell having shared them), to sharpen their understanding of the most important difficulties associated with interpreting quantum theory in a realistic manner, and to introduce them to the most promising attempts to formulate the theory in a way that is physically clear and coherent. The text is accessible to students with at least one semester of prior exposure to quantum (or "modern") physics and includes over a hundred engaging end-of-chapter "Projects" that make the book suitable for either a traditional classroom or for self-study.
Publisher: Springer
ISBN: 3319658670
Category : Science
Languages : en
Pages : 316
Book Description
Authored by an acclaimed teacher of quantum physics and philosophy, this textbook pays special attention to the aspects that many courses sweep under the carpet. Traditional courses in quantum mechanics teach students how to use the quantum formalism to make calculations. But even the best students - indeed, especially the best students - emerge rather confused about what, exactly, the theory says is going on, physically, in microscopic systems. This supplementary textbook is designed to help such students understand that they are not alone in their confusions (luminaries such as Albert Einstein, Erwin Schroedinger, and John Stewart Bell having shared them), to sharpen their understanding of the most important difficulties associated with interpreting quantum theory in a realistic manner, and to introduce them to the most promising attempts to formulate the theory in a way that is physically clear and coherent. The text is accessible to students with at least one semester of prior exposure to quantum (or "modern") physics and includes over a hundred engaging end-of-chapter "Projects" that make the book suitable for either a traditional classroom or for self-study.
A Philosophical Approach to Quantum Field Theory
Author: Hans Christian Öttinger
Publisher: Cambridge University Press
ISBN: 1108246206
Category : Science
Languages : en
Pages : 276
Book Description
This text presents an intuitive and robust mathematical image of fundamental particle physics based on a novel approach to quantum field theory, which is guided by four carefully motivated metaphysical postulates. In particular, the book explores a dissipative approach to quantum field theory, which is illustrated for scalar field theory and quantum electrodynamics, and proposes an attractive explanation of the Planck scale in quantum gravity. Offering a radically new perspective on this topic, the book focuses on the conceptual foundations of quantum field theory and ontological questions. It also suggests a new stochastic simulation technique in quantum field theory which is complementary to existing ones. Encouraging rigor in a field containing many mathematical subtleties and pitfalls this text is a helpful companion for students of physics and philosophers interested in quantum field theory, and it allows readers to gain an intuitive rather than a formal understanding.
Publisher: Cambridge University Press
ISBN: 1108246206
Category : Science
Languages : en
Pages : 276
Book Description
This text presents an intuitive and robust mathematical image of fundamental particle physics based on a novel approach to quantum field theory, which is guided by four carefully motivated metaphysical postulates. In particular, the book explores a dissipative approach to quantum field theory, which is illustrated for scalar field theory and quantum electrodynamics, and proposes an attractive explanation of the Planck scale in quantum gravity. Offering a radically new perspective on this topic, the book focuses on the conceptual foundations of quantum field theory and ontological questions. It also suggests a new stochastic simulation technique in quantum field theory which is complementary to existing ones. Encouraging rigor in a field containing many mathematical subtleties and pitfalls this text is a helpful companion for students of physics and philosophers interested in quantum field theory, and it allows readers to gain an intuitive rather than a formal understanding.