The Foundations of Geometry

The Foundations of Geometry PDF Author: David Hilbert
Publisher: Read Books Ltd
ISBN: 1473395941
Category : History
Languages : en
Pages : 139

Get Book Here

Book Description
This early work by David Hilbert was originally published in the early 20th century and we are now republishing it with a brand new introductory biography. David Hilbert was born on the 23rd January 1862, in a Province of Prussia. Hilbert is recognised as one of the most influential and universal mathematicians of the 19th and early 20th centuries. He discovered and developed a broad range of fundamental ideas in many areas, including invariant theory and the axiomatization of geometry. He also formulated the theory of Hilbert spaces, one of the foundations of functional analysis.

The Foundations of Geometry

The Foundations of Geometry PDF Author: David Hilbert
Publisher: Read Books Ltd
ISBN: 1473395941
Category : History
Languages : en
Pages : 139

Get Book Here

Book Description
This early work by David Hilbert was originally published in the early 20th century and we are now republishing it with a brand new introductory biography. David Hilbert was born on the 23rd January 1862, in a Province of Prussia. Hilbert is recognised as one of the most influential and universal mathematicians of the 19th and early 20th centuries. He discovered and developed a broad range of fundamental ideas in many areas, including invariant theory and the axiomatization of geometry. He also formulated the theory of Hilbert spaces, one of the foundations of functional analysis.

Foundations of Geometry

Foundations of Geometry PDF Author: C. R. Wylie
Publisher: Courier Corporation
ISBN: 0486472140
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
Explains geometric theories and shows many examples.

Foundations of Geometry

Foundations of Geometry PDF Author: Karol Borsuk
Publisher: Courier Dover Publications
ISBN: 0486828093
Category : Mathematics
Languages : en
Pages : 465

Get Book Here

Book Description
In Part One of this comprehensive and frequently cited treatment, the authors develop Euclidean and Bolyai-Lobachevskian geometry on the basis of an axiom system due, in principle, to the work of David Hilbert. Part Two develops projective geometry in much the same way. An Introduction provides background on topological space, analytic geometry, and other relevant topics, and rigorous proofs appear throughout the text. Topics covered by Part One include axioms of incidence and order, axioms of congruence, the axiom of continuity, models of absolute geometry, and Euclidean geometry, culminating in the treatment of Bolyai-Lobachevskian geometry. Part Two examines axioms of incidents and order and the axiom of continuity, concluding with an exploration of models of projective geometry.

New Foundations for Physical Geometry

New Foundations for Physical Geometry PDF Author: Tim Maudlin
Publisher:
ISBN: 0198701306
Category : Mathematics
Languages : en
Pages : 374

Get Book Here

Book Description
Tim Maudlin sets out a completely new method for describing the geometrical structure of spaces, and thus a better mathematical tool for describing and understanding space-time. He presents a historical review of the development of geometry and topology, and then his original Theory of Linear Structures.

An Essay on the Foundations of Geometry

An Essay on the Foundations of Geometry PDF Author: Bertrand Russell
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 228

Get Book Here

Book Description


The Foundations of Geometry and the Non-Euclidean Plane

The Foundations of Geometry and the Non-Euclidean Plane PDF Author: G.E. Martin
Publisher: Springer Science & Business Media
ISBN: 1461257255
Category : Mathematics
Languages : en
Pages : 525

Get Book Here

Book Description
This book is a text for junior, senior, or first-year graduate courses traditionally titled Foundations of Geometry and/or Non Euclidean Geometry. The first 29 chapters are for a semester or year course on the foundations of geometry. The remaining chap ters may then be used for either a regular course or independent study courses. Another possibility, which is also especially suited for in-service teachers of high school geometry, is to survey the the fundamentals of absolute geometry (Chapters 1 -20) very quickly and begin earnest study with the theory of parallels and isometries (Chapters 21 -30). The text is self-contained, except that the elementary calculus is assumed for some parts of the material on advanced hyperbolic geometry (Chapters 31 -34). There are over 650 exercises, 30 of which are 10-part true-or-false questions. A rigorous ruler-and-protractor axiomatic development of the Euclidean and hyperbolic planes, including the classification of the isometries of these planes, is balanced by the discussion about this development. Models, such as Taxicab Geometry, are used exten sively to illustrate theory. Historical aspects and alternatives to the selected axioms are prominent. The classical axiom systems of Euclid and Hilbert are discussed, as are axiom systems for three and four-dimensional absolute geometry and Pieri's system based on rigid motions. The text is divided into three parts. The Introduction (Chapters 1 -4) is to be read as quickly as possible and then used for ref erence if necessary.

Foundations of Geometry

Foundations of Geometry PDF Author: Gerard Venema
Publisher:
ISBN: 9780136020585
Category : Geometry
Languages : en
Pages : 0

Get Book Here

Book Description
Normal 0 false false false Foundations of Geometry, Second Edition is written to help enrich the education of all mathematics majors and facilitate a smooth transition into more advanced mathematics courses. The text also implements the latest national standards and recommendations regarding geometry for the preparation of high school mathematics teachers--and encourages students to make connections between their college courses and classes they will later teach. This text's coverage begins with Euclid's Elements, lays out a system of axioms for geometry, and then moves on to neutral geometry, Euclidian and hyperbolic geometries from an axiomatic point of view, and then non-Euclidean geometry. Good proof-writing skills are emphasized, along with a historical development of geometry. The Second Edition streamlines and reorganizes material in order to reach coverage of neutral geometry as early as possible, adds more exercises throughout, and facilitates use of the open-source software Geogebra. This text is ideal for an undergraduate course in axiomatic geometry for future high school geometry teachers, or for any student who has not yet encountered upper-level math, such as real analysis or abstract algebra. It assumes calculus and linear algebra as prerequisites.

Foundations of Incidence Geometry

Foundations of Incidence Geometry PDF Author: Johannes Ueberberg
Publisher: Springer Science & Business Media
ISBN: 3642209726
Category : Mathematics
Languages : en
Pages : 259

Get Book Here

Book Description
Incidence geometry is a central part of modern mathematics that has an impressive tradition. The main topics of incidence geometry are projective and affine geometry and, in more recent times, the theory of buildings and polar spaces. Embedded into the modern view of diagram geometry, projective and affine geometry including the fundamental theorems, polar geometry including the Theorem of Buekenhout-Shult and the classification of quadratic sets are presented in this volume. Incidence geometry is developed along the lines of the fascinating work of Jacques Tits and Francis Buekenhout. The book is a clear and comprehensible introduction into a wonderful piece of mathematics. More than 200 figures make even complicated proofs accessible to the reader.

Foundations of Plane Geometry

Foundations of Plane Geometry PDF Author: Harvey I. Blau
Publisher:
ISBN: 9780130479549
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
Ideal for users who may have little previous experience with abstraction and proof, this book provides a rigorous and unified--yet straightforward and accessible --exposition of the foundations of Euclidean, hyperbolic, and spherical geometry. Unique in approach, it combines an extended theme--the study of a generalized absolute plane from axioms through classification into the three fundamental classical planes--with a leisurely development that allows ample time for mathematical growth. It is purposefully structured to facilitate the development of analytic and reasoning skills and to promote an awareness of the depth, power, and subtlety of the axiomatic method in general, and of Euclidean and non-Euclidean plane geometry in particular. Focus on one main topic--The axiomatic development of the absolute plane--which is pursued through a classification into Euclidean, hyperbolic, and spherical planes. Presents specific models such as the sphere, the Klein-Betrami hyperbolic model, and the "gap" plane. Gradually presents axioms for absolute plane geometry.

Geometry

Geometry PDF Author: Michel Serres
Publisher: Bloomsbury Publishing
ISBN: 1474281419
Category : Philosophy
Languages : en
Pages : 224

Get Book Here

Book Description
In this third installment of his classic 'Foundations' trilogy, Michel Serres takes on the history of geometry and mathematics. Even more broadly, Geometry is the beginnings of things and also how these beginnings have shaped how we continue to think philosophically and critically. Serres rejects a traditional history of mathematics which unfolds in a linear manner, and argues for the need to delve into the past of maths and identify a series of ruptures which can help shed light on how this discipline has developed and how, in turn, the way we think has been shaped and formed. This meticulous and lyrical translation marks the first ever English translation of this key text in the history of ideas.