Author: Euler
Publisher: Springer Science & Business Media
ISBN: 0387226451
Category : Mathematics
Languages : en
Pages : 208
Book Description
The positive response to the publication of Blanton's English translations of Euler's "Introduction to Analysis of the Infinite" confirmed the relevance of this 240 year old work and encouraged Blanton to translate Euler's "Foundations of Differential Calculus" as well. The current book constitutes just the first 9 out of 27 chapters. The remaining chapters will be published at a later time. With this new translation, Euler's thoughts will not only be more accessible but more widely enjoyed by the mathematical community.
Foundations of Differential Calculus
Author: Euler
Publisher: Springer Science & Business Media
ISBN: 0387226451
Category : Mathematics
Languages : en
Pages : 208
Book Description
The positive response to the publication of Blanton's English translations of Euler's "Introduction to Analysis of the Infinite" confirmed the relevance of this 240 year old work and encouraged Blanton to translate Euler's "Foundations of Differential Calculus" as well. The current book constitutes just the first 9 out of 27 chapters. The remaining chapters will be published at a later time. With this new translation, Euler's thoughts will not only be more accessible but more widely enjoyed by the mathematical community.
Publisher: Springer Science & Business Media
ISBN: 0387226451
Category : Mathematics
Languages : en
Pages : 208
Book Description
The positive response to the publication of Blanton's English translations of Euler's "Introduction to Analysis of the Infinite" confirmed the relevance of this 240 year old work and encouraged Blanton to translate Euler's "Foundations of Differential Calculus" as well. The current book constitutes just the first 9 out of 27 chapters. The remaining chapters will be published at a later time. With this new translation, Euler's thoughts will not only be more accessible but more widely enjoyed by the mathematical community.
Foundations of Differentiable Manifolds and Lie Groups
Author: Frank W. Warner
Publisher: Springer Science & Business Media
ISBN: 1475717997
Category : Mathematics
Languages : en
Pages : 283
Book Description
Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.
Publisher: Springer Science & Business Media
ISBN: 1475717997
Category : Mathematics
Languages : en
Pages : 283
Book Description
Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.
Foundations of Differential Calculus
Author: Euler
Publisher: Springer Science & Business Media
ISBN: 0387985344
Category : Mathematics
Languages : en
Pages : 215
Book Description
What differential calculus, and, in general, analysis ofthe infinite, might be can hardly be explainedto those innocent ofany knowledge ofit. Nor can we here offer a definition at the beginning of this dissertation as is sometimes done in other disciplines. It is not that there is no clear definition of this calculus; rather, the fact is that in order to understand the definition there are concepts that must first be understood. Besides those ideas in common usage, there are also others from finite analysis that are much less common and are usually explained in the courseofthe development ofthe differential calculus. For this reason, it is not possible to understand a definition before its principles are sufficiently clearly seen. In the first place, this calculus is concerned with variable quantities. Although every quantity can naturally be increased or decreased without limit, still, since calculus is directed to a certain purpose, we think of some quantities as being constantly the same magnitude, while others change through all the .stages of increasing and decreasing. We note this distinc tion and call the former constant quantities and the latter variables. This characteristic difference is not required by the nature of things, but rather because of the special question addressed by the calculus.
Publisher: Springer Science & Business Media
ISBN: 0387985344
Category : Mathematics
Languages : en
Pages : 215
Book Description
What differential calculus, and, in general, analysis ofthe infinite, might be can hardly be explainedto those innocent ofany knowledge ofit. Nor can we here offer a definition at the beginning of this dissertation as is sometimes done in other disciplines. It is not that there is no clear definition of this calculus; rather, the fact is that in order to understand the definition there are concepts that must first be understood. Besides those ideas in common usage, there are also others from finite analysis that are much less common and are usually explained in the courseofthe development ofthe differential calculus. For this reason, it is not possible to understand a definition before its principles are sufficiently clearly seen. In the first place, this calculus is concerned with variable quantities. Although every quantity can naturally be increased or decreased without limit, still, since calculus is directed to a certain purpose, we think of some quantities as being constantly the same magnitude, while others change through all the .stages of increasing and decreasing. We note this distinc tion and call the former constant quantities and the latter variables. This characteristic difference is not required by the nature of things, but rather because of the special question addressed by the calculus.
Foundations of the Calculus
Author: Henry F. De Baggis
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 268
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 268
Book Description
Foundations of Mathematical Analysis
Author: Richard Johnsonbaugh
Publisher: Courier Corporation
ISBN: 0486134776
Category : Mathematics
Languages : en
Pages : 450
Book Description
Definitive look at modern analysis, with views of applications to statistics, numerical analysis, Fourier series, differential equations, mathematical analysis, and functional analysis. More than 750 exercises; some hints and solutions. 1981 edition.
Publisher: Courier Corporation
ISBN: 0486134776
Category : Mathematics
Languages : en
Pages : 450
Book Description
Definitive look at modern analysis, with views of applications to statistics, numerical analysis, Fourier series, differential equations, mathematical analysis, and functional analysis. More than 750 exercises; some hints and solutions. 1981 edition.
The Absolute Differential Calculus
Author: Tullio Levi-Civita
Publisher:
ISBN:
Category : Calculus of tensors
Languages : en
Pages : 476
Book Description
Publisher:
ISBN:
Category : Calculus of tensors
Languages : en
Pages : 476
Book Description
Foundations of Analysis
Author: Edmund Landau
Publisher:
ISBN: 9781950217083
Category :
Languages : en
Pages : 142
Book Description
Natural numbers, zero, negative integers, rational numbers, irrational numbers, real numbers, complex numbers, . . ., and, what are numbers? The most accurate mathematical answer to the question is given in this book.
Publisher:
ISBN: 9781950217083
Category :
Languages : en
Pages : 142
Book Description
Natural numbers, zero, negative integers, rational numbers, irrational numbers, real numbers, complex numbers, . . ., and, what are numbers? The most accurate mathematical answer to the question is given in this book.
Lacroix and the Calculus
Author: João Caramalho Domingues
Publisher: Springer Science & Business Media
ISBN: 376438638X
Category : Mathematics
Languages : en
Pages : 475
Book Description
Silvestre François Lacroix was not a prominent mathematical researcher, but he was certainly a most influential mathematical book author. His most famous work is the three-volume Traité du calcul différentiel et du calcul intégral, which is an encyclopedic appraisal of 18th-century calculus that remained the standard reference on the subject through much of the 19th century. This book provides the first global and detailed study of Lacroix's Traité Traité du calcul.
Publisher: Springer Science & Business Media
ISBN: 376438638X
Category : Mathematics
Languages : en
Pages : 475
Book Description
Silvestre François Lacroix was not a prominent mathematical researcher, but he was certainly a most influential mathematical book author. His most famous work is the three-volume Traité du calcul différentiel et du calcul intégral, which is an encyclopedic appraisal of 18th-century calculus that remained the standard reference on the subject through much of the 19th century. This book provides the first global and detailed study of Lacroix's Traité Traité du calcul.
Foundations of Differential Geodesy
Author: Joseph Zund
Publisher: Springer Science & Business Media
ISBN: 3642791875
Category : Science
Languages : en
Pages : 385
Book Description
Differential geodesy is concerned with the geometry of the gravity field of the Earth, which is of fundamental importance to both theoretical geodesy and geophysics. This monograph presents a unified treatment of the foundations of differential geodesy as proposed originally by Antonio Marussi and Martin Hotine in their work. The principal features of the Marussi-Hotine approach to theoretical aspects are given in the first five chapters (based on leg calculus), while the last five chapters are devoted to the fundamental ideas of the Marussi and Hotine theory. The text includes practical problems and is intended for use by research geodesists, graduate students in geodesy, and theoretical geophysicists.
Publisher: Springer Science & Business Media
ISBN: 3642791875
Category : Science
Languages : en
Pages : 385
Book Description
Differential geodesy is concerned with the geometry of the gravity field of the Earth, which is of fundamental importance to both theoretical geodesy and geophysics. This monograph presents a unified treatment of the foundations of differential geodesy as proposed originally by Antonio Marussi and Martin Hotine in their work. The principal features of the Marussi-Hotine approach to theoretical aspects are given in the first five chapters (based on leg calculus), while the last five chapters are devoted to the fundamental ideas of the Marussi and Hotine theory. The text includes practical problems and is intended for use by research geodesists, graduate students in geodesy, and theoretical geophysicists.
Differential and Integral Calculus
Author: Edmund Landau
Publisher: University of Pennsylvania Press
ISBN: 9780821828304
Category : Mathematics
Languages : en
Pages : 388
Book Description
After completing his famous Foundations of Analysis, Landau turned his attention to this book on calculus. The approach is that of an unrepentant analyst, with an emphasis on functions rather than on geometric or physical applications. The book is another example of Landau's formidable skill as an expositor. It is a masterpiece of rigor and clarity. And what a book it is! The marks of Landau's thoroughness and elegance, and of his undoubted authority, impress themselves on the reader at every turn, from the opening of the preface ... to the closing of the final chapter. It is a book that all analysts ... should possess ... to see how a master of his craft like Landau presented the calculus when he was at the height of his power and reputation. --Mathematical Gazette
Publisher: University of Pennsylvania Press
ISBN: 9780821828304
Category : Mathematics
Languages : en
Pages : 388
Book Description
After completing his famous Foundations of Analysis, Landau turned his attention to this book on calculus. The approach is that of an unrepentant analyst, with an emphasis on functions rather than on geometric or physical applications. The book is another example of Landau's formidable skill as an expositor. It is a masterpiece of rigor and clarity. And what a book it is! The marks of Landau's thoroughness and elegance, and of his undoubted authority, impress themselves on the reader at every turn, from the opening of the preface ... to the closing of the final chapter. It is a book that all analysts ... should possess ... to see how a master of his craft like Landau presented the calculus when he was at the height of his power and reputation. --Mathematical Gazette