Foundations of Computational Intelligence Volume 3

Foundations of Computational Intelligence Volume 3 PDF Author: Ajith Abraham
Publisher: Springer
ISBN: 3642010857
Category : Computers
Languages : en
Pages : 531

Get Book Here

Book Description
Global optimization is a branch of applied mathematics and numerical analysis that deals with the task of finding the absolutely best set of admissible conditions to satisfy certain criteria / objective function(s), formulated in mathematical terms. Global optimization includes nonlinear, stochastic and combinatorial programming, multiobjective programming, control, games, geometry, approximation, algorithms for parallel architectures and so on. Due to its wide usage and applications, it has gained the attention of researchers and practitioners from a plethora of scientific domains. Typical practical examples of global optimization applications include: Traveling salesman problem and electrical circuit design (minimize the path length); safety engineering (building and mechanical structures); mathematical problems (Kepler conjecture); Protein structure prediction (minimize the energy function) etc. Global Optimization algorithms may be categorized into several types: Deterministic (example: branch and bound methods), Stochastic optimization (example: simulated annealing). Heuristics and meta-heuristics (example: evolutionary algorithms) etc. Recently there has been a growing interest in combining global and local search strategies to solve more complicated optimization problems. This edited volume comprises 17 chapters, including several overview Chapters, which provides an up-to-date and state-of-the art research covering the theory and algorithms of global optimization. Besides research articles and expository papers on theory and algorithms of global optimization, papers on numerical experiments and on real world applications were also encouraged. The book is divided into 2 main parts.

Foundations of Computational Intelligence

Foundations of Computational Intelligence PDF Author: Ajith Abraham
Publisher: Springer Science & Business Media
ISBN: 3642010903
Category : Mathematics
Languages : en
Pages : 397

Get Book Here

Book Description
Foundations of Computational Intelligence Volume 6: Data Mining: Theoretical Foundations and Applications Finding information hidden in data is as theoretically difficult as it is practically important. With the objective of discovering unknown patterns from data, the methodologies of data mining were derived from statistics, machine learning, and artificial intelligence, and are being used successfully in application areas such as bioinformatics, business, health care, banking, retail, and many others. Advanced representation schemes and computational intelligence techniques such as rough sets, neural networks; decision trees; fuzzy logic; evolutionary algorithms; arti- cial immune systems; swarm intelligence; reinforcement learning, association rule mining, Web intelligence paradigms etc. have proved valuable when they are - plied to Data Mining problems. Computational tools or solutions based on intel- gent systems are being used with great success in Data Mining applications. It is also observed that strong scientific advances have been made when issues from different research areas are integrated. This Volume comprises of 15 chapters including an overview chapter providing an up-to-date and state-of-the research on the applications of Computational Int- ligence techniques for Data Mining. The book is divided into 3 parts: Part-I: Data Click Streams and Temporal Data Mining Part-II: Text and Rule Mining Part-III: Applications Part I on Data Click Streams and Temporal Data Mining contains four chapters that describe several approaches in Data Click Streams and Temporal Data Mining.

Fundamentals of Computational Intelligence

Fundamentals of Computational Intelligence PDF Author: James M. Keller
Publisher: John Wiley & Sons
ISBN: 111921436X
Category : Technology & Engineering
Languages : en
Pages : 378

Get Book Here

Book Description
Provides an in-depth and even treatment of the three pillars of computational intelligence and how they relate to one another This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basis function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzzy integrals Examines evolutionary optimization, evolutionary learning and problem solving, and collective intelligence Includes end-of-chapter practice problems that will help readers apply methods and techniques to real-world problems Fundamentals of Computational intelligence is written for advanced undergraduates, graduate students, and practitioners in electrical and computer engineering, computer science, and other engineering disciplines.

Foundations of Computational Intelligence Volume 5

Foundations of Computational Intelligence Volume 5 PDF Author: Ajith Abraham
Publisher: Springer Science & Business Media
ISBN: 3642015352
Category : Mathematics
Languages : en
Pages : 378

Get Book Here

Book Description
Foundations of Computational Intelligence Volume 5: Function Approximation and Classification Approximation theory is that area of analysis which is concerned with the ability to approximate functions by simpler and more easily calculated functions. It is an area which, like many other fields of analysis, has its primary roots in the mat- matics. The need for function approximation and classification arises in many branches of applied mathematics, computer science and data mining in particular. This edited volume comprises of 14 chapters, including several overview Ch- ters, which provides an up-to-date and state-of-the art research covering the theory and algorithms of function approximation and classification. Besides research ar- cles and expository papers on theory and algorithms of function approximation and classification, papers on numerical experiments and real world applications were also encouraged. The Volume is divided into 2 parts: Part-I: Function Approximation and Classification – Theoretical Foundations Part-II: Function Approximation and Classification – Success Stories and Real World Applications Part I on Function Approximation and Classification – Theoretical Foundations contains six chapters that describe several approaches Feature Selection, the use Decomposition of Correlation Integral, Some Issues on Extensions of Information and Dynamic Information System and a Probabilistic Approach to the Evaluation and Combination of Preferences Chapter 1 “Feature Selection for Partial Least Square Based Dimension Red- tion” by Li and Zeng investigate a systematic feature reduction framework by combing dimension reduction with feature selection. To evaluate the proposed framework authors used four typical data sets.

Foundations of Computational Intelligence Volume 2

Foundations of Computational Intelligence Volume 2 PDF Author: Aboul-Ella Hassanien
Publisher: Springer
ISBN: 3642015336
Category : Technology & Engineering
Languages : en
Pages : 313

Get Book Here

Book Description
Foundations of Computational Intelligence Volume 2: Approximation Reasoning: Theoretical Foundations and Applications Human reasoning usually is very approximate and involves various types of - certainties. Approximate reasoning is the computational modelling of any part of the process used by humans to reason about natural phenomena or to solve real world problems. The scope of this book includes fuzzy sets, Dempster-Shafer theory, multi-valued logic, probability, random sets, and rough set, near set and hybrid intelligent systems. Besides research articles and expository papers on t- ory and algorithms of approximation reasoning, papers on numerical experiments and real world applications were also encouraged. This Volume comprises of 12 chapters including an overview chapter providing an up-to-date and state-of-the research on the applications of Computational Intelligence techniques for - proximation reasoning. The Volume is divided into 2 parts: Part-I: Approximate Reasoning – Theoretical Foundations Part-II: Approximate Reasoning – Success Stories and Real World Applications Part I on Approximate Reasoning – Theoretical Foundations contains four ch- ters that describe several approaches of fuzzy and Para consistent annotated logic approximation reasoning. In Chapter 1, “Fuzzy Sets, Near Sets, and Rough Sets for Your Computational Intelligence Toolbox” by Peters considers how a user might utilize fuzzy sets, near sets, and rough sets, taken separately or taken together in hybridizations as part of a computational intelligence toolbox. In multi-criteria decision making, it is necessary to aggregate (combine) utility values corresponding to several criteria (parameters).

Computational Intelligence in Sports

Computational Intelligence in Sports PDF Author: Iztok Fister
Publisher: Springer
ISBN: 3030034909
Category : Technology & Engineering
Languages : en
Pages : 283

Get Book Here

Book Description
This book presents recent research on computational intelligence (CI) algorithms in the field of sport. In the modern age, information technologies have greatly reduced the need for human effort in the carrying out of many daily tasks. These technologies have radically influenced the lives of humans, and the information society in general. Unfortunately, these advances have brought with them certain negative effects, including the encouragement of sedentary lifestyles and the attendant health problems such as obesity that these engender. Other modern maladies, chiefly cardiovascular disease, diabetes, and cancer, have also been on the increase. Today, sports are virtually the only activity that still connects modern humans to their original lifestyle, which was based on physical motion. This book tears familiarizing sports scientists with the foundations of computational intelligence, while at the same time presenting the problems that have arisen in the training domain to computer scientists. Lastly, the book proposes the use of an Artificial Sports Trainer designed to enhance the training of modern athletes who cannot afford the considerable expense of hiring a human personal trainer. This intelligent system can monitor performance and design and direct appropriate future training, thus promoting both healthy lifestyles and competitive success in athletes.

Complex Networks

Complex Networks PDF Author: Ronaldo Menezes
Publisher: Springer
ISBN: 364201206X
Category : Computers
Languages : en
Pages : 232

Get Book Here

Book Description
Though the reductionist approachto biology and medicine has led to several imp- tant advances, further progresses with respect to the remaining challenges require integration of representation, characterization and modeling of the studied systems along a wide range of spatial and time scales. Such an approach, intrinsically - lated to systems biology, is poised to ultimately turning biology into a more precise and synthetic discipline, paving the way to extensive preventive and regenerative medicine [1], drug discovery [20] and treatment optimization [24]. A particularly appealing and effective approach to addressing the complexity of interactions inherent to the biological systems is provided by the new area of c- plex networks [34, 30, 8, 13, 12]. Basically, it is an extension of graph theory [10], focusing on the modeling, representation, characterization, analysis and simulation ofcomplexsystemsbyconsideringmanyelementsandtheirinterconnections.C- plex networks concepts and methods have been used to study disease [17], tr- scription networks [5, 6, 4], protein-protein networks [22, 36, 16, 39], metabolic networks [23] and anatomy [40].

Recent Advances in Decision Making

Recent Advances in Decision Making PDF Author: Elisabeth Rakus-Andersson
Publisher: Springer Science & Business Media
ISBN: 3642021867
Category : Business & Economics
Languages : en
Pages : 184

Get Book Here

Book Description
Intelligent paradigms are increasingly finding their ways in the design and development of decision support systems. This book presents a sample of recent research results from key researchers. The contributions include: Introduction to intelligent systems in decision making - A new method of ranking intuitionistic fuzzy alternatives - Fuzzy rule base model identification by bacterial memetic algorithms - Discovering associations with uncertainty from large databases - Dempster-Shafer structures, monotonic set measures and decision making - Interpretable decision-making models - A general methodology for managerial decision making - Supporting decision making via verbalization of data analysis results using linguistic data summaries - Computational intelligence in medical decisions making. This book is directed to the researchers, graduate students, professors, decision makers and to those who are interested to investigate intelligent paradigms in decision making.

Genetic Algorithms for Applied CAD Problems

Genetic Algorithms for Applied CAD Problems PDF Author: Viktor M. Kureichik
Publisher: Springer Science & Business Media
ISBN: 3540852808
Category : Computers
Languages : en
Pages : 249

Get Book Here

Book Description
New perspective technologies of genetic search and evolution simulation represent the kernel of this book. The authors wanted to show how these technologies are used for practical problems solution. This monograph is devoted to specialists of CAD, intellectual information technologies in science, biology, economics, sociology and others. It may be used by post-graduate students and students of specialties connected to the systems theory and system analysis methods, information science, optimization methods, operations investigation and solution-making.

Opportunities and Challenges for Next-Generation Applied Intelligence

Opportunities and Challenges for Next-Generation Applied Intelligence PDF Author: Been-Chian Chien
Publisher: Springer
ISBN: 3540928146
Category : Technology & Engineering
Languages : en
Pages : 341

Get Book Here

Book Description
The term “Artificial Intelligence” has been used since 1956 and has become a very popular research field. Generally, it is the study of the computations that enable a system to perceive, reason and act. In the early days, it was expected to achieve the same intelligent behavior as a human, but found impossible at last. Its goal was thus revised to design and use of intelligent methods to make systems more ef- cient at solving problems. The term “Applied Intelligence” was thus created to represent its practicality. It emphasizes applications of applied intelligent systems to solve real-life problems in all areas including engineering, science, industry, automation, robotics, business, finance, medicine, bio-medicine, bio-informatics, cyberspace, and man-machine interactions. To endow the intelligent behavior of a system, many useful and interesting techniques have been developed. Some of them are even borrowed from the na- ral observation and biological phenomenon. Neural networks and evolutionary computation are two examples of them. Besides, some other heuristic approaches like data mining, adaptive control, intelligent manufacturing, autonomous agents, bio-informatics, reasoning, computer vision, decision support systems, expert s- tems, fuzzy logic, robots, intelligent interfaces, internet technology, planning and scheduling, are also commonly used in applied intelligence.