Author: Wilson C. Chin
Publisher: John Wiley & Sons
ISBN: 1118831144
Category : Science
Languages : en
Pages : 405
Book Description
The only book available for the reservoir or petroleum engineer covering formation testing—with algorithms for wireline and LWD reservoir analysis developed for transient pressure, contamination modeling, permeability, and pore pressure prediction. Traditional well logging methods, such as resistivity, acoustic, nuclear, and NMR, provide indirect information relating to fluid and formation properties. However, the "formation tester" offered in wireline and MWD/LWD operations is different. It collects actual downhole fluid samples for surface analysis, and through pressure transient analysis, provides direct measurements for pore pressure, mobility, permeability, and anisotropy. These are vital to real-time drilling safety, geosteering, hydraulic fracturing, and economic analysis. Methods for formation testing analysis, while commercially important and accounting for a substantial part of service company profits, are shrouded in secrecy. Many are poorly constructed, and because details are not available, industry researchers are not able to improve on them. Formation Testing explains conventional models and develops new, more powerful algorithms for early-time analysis. More importantly, it addresses a critical area in sampling related to "time required to pump clean samples," using rigorous multiphase flow techniques. All of the methods are explained in complete detail. Equations are offered for users to incorporate in their own models, but, for those needing immediate answers, convenient, easy-to-use software is available. The lead author is a well-known petrophysicist with hands-on experience at Schlumberger, Halliburton, BP Exploration, and other companies. His work is used commercially at major oil service companies, and important extensions to his formation testing models have been supported by prestigious grants from the U.S. Department of Energy. His latest collaboration with China National Offshore Oil Corporation marks an important turning point, where advanced simulation models and hardware are evolving side-by-side, defining a new generation of formation testing logging instruments. Providing more than formulations and solutions, this book offers a close look at "behind the scenes" formation tester development, as the China National Offshore Oil Corporation opens up its research, engineering, and manufacturing facilities through a collection of never-before-seen photographs, showing how formation testing tools are developed from start to finish.
Formation Testing
Author: Wilson C. Chin
Publisher: John Wiley & Sons
ISBN: 1118831144
Category : Science
Languages : en
Pages : 405
Book Description
The only book available for the reservoir or petroleum engineer covering formation testing—with algorithms for wireline and LWD reservoir analysis developed for transient pressure, contamination modeling, permeability, and pore pressure prediction. Traditional well logging methods, such as resistivity, acoustic, nuclear, and NMR, provide indirect information relating to fluid and formation properties. However, the "formation tester" offered in wireline and MWD/LWD operations is different. It collects actual downhole fluid samples for surface analysis, and through pressure transient analysis, provides direct measurements for pore pressure, mobility, permeability, and anisotropy. These are vital to real-time drilling safety, geosteering, hydraulic fracturing, and economic analysis. Methods for formation testing analysis, while commercially important and accounting for a substantial part of service company profits, are shrouded in secrecy. Many are poorly constructed, and because details are not available, industry researchers are not able to improve on them. Formation Testing explains conventional models and develops new, more powerful algorithms for early-time analysis. More importantly, it addresses a critical area in sampling related to "time required to pump clean samples," using rigorous multiphase flow techniques. All of the methods are explained in complete detail. Equations are offered for users to incorporate in their own models, but, for those needing immediate answers, convenient, easy-to-use software is available. The lead author is a well-known petrophysicist with hands-on experience at Schlumberger, Halliburton, BP Exploration, and other companies. His work is used commercially at major oil service companies, and important extensions to his formation testing models have been supported by prestigious grants from the U.S. Department of Energy. His latest collaboration with China National Offshore Oil Corporation marks an important turning point, where advanced simulation models and hardware are evolving side-by-side, defining a new generation of formation testing logging instruments. Providing more than formulations and solutions, this book offers a close look at "behind the scenes" formation tester development, as the China National Offshore Oil Corporation opens up its research, engineering, and manufacturing facilities through a collection of never-before-seen photographs, showing how formation testing tools are developed from start to finish.
Publisher: John Wiley & Sons
ISBN: 1118831144
Category : Science
Languages : en
Pages : 405
Book Description
The only book available for the reservoir or petroleum engineer covering formation testing—with algorithms for wireline and LWD reservoir analysis developed for transient pressure, contamination modeling, permeability, and pore pressure prediction. Traditional well logging methods, such as resistivity, acoustic, nuclear, and NMR, provide indirect information relating to fluid and formation properties. However, the "formation tester" offered in wireline and MWD/LWD operations is different. It collects actual downhole fluid samples for surface analysis, and through pressure transient analysis, provides direct measurements for pore pressure, mobility, permeability, and anisotropy. These are vital to real-time drilling safety, geosteering, hydraulic fracturing, and economic analysis. Methods for formation testing analysis, while commercially important and accounting for a substantial part of service company profits, are shrouded in secrecy. Many are poorly constructed, and because details are not available, industry researchers are not able to improve on them. Formation Testing explains conventional models and develops new, more powerful algorithms for early-time analysis. More importantly, it addresses a critical area in sampling related to "time required to pump clean samples," using rigorous multiphase flow techniques. All of the methods are explained in complete detail. Equations are offered for users to incorporate in their own models, but, for those needing immediate answers, convenient, easy-to-use software is available. The lead author is a well-known petrophysicist with hands-on experience at Schlumberger, Halliburton, BP Exploration, and other companies. His work is used commercially at major oil service companies, and important extensions to his formation testing models have been supported by prestigious grants from the U.S. Department of Energy. His latest collaboration with China National Offshore Oil Corporation marks an important turning point, where advanced simulation models and hardware are evolving side-by-side, defining a new generation of formation testing logging instruments. Providing more than formulations and solutions, this book offers a close look at "behind the scenes" formation tester development, as the China National Offshore Oil Corporation opens up its research, engineering, and manufacturing facilities through a collection of never-before-seen photographs, showing how formation testing tools are developed from start to finish.
Formation Testing
Author: Wilson Chin
Publisher: Wiley-Scrivener
ISBN: 9781118831137
Category : Science
Languages : en
Pages : 0
Book Description
The only book available for the reservoir or petroleum engineer covering formation testing—with algorithms for wireline and LWD reservoir analysis developed for transient pressure, contamination modeling, permeability, and pore pressure prediction. Traditional well logging methods, such as resistivity, acoustic, nuclear, and NMR, provide indirect information relating to fluid and formation properties. However, the "formation tester" offered in wireline and MWD/LWD operations is different. It collects actual downhole fluid samples for surface analysis, and through pressure transient analysis, provides direct measurements for pore pressure, mobility, permeability, and anisotropy. These are vital to real-time drilling safety, geosteering, hydraulic fracturing, and economic analysis. Methods for formation testing analysis, while commercially important and accounting for a substantial part of service company profits, are shrouded in secrecy. Many are poorly constructed, and because details are not available, industry researchers are not able to improve on them. Formation Testing explains conventional models and develops new, more powerful algorithms for early-time analysis. More importantly, it addresses a critical area in sampling related to "time required to pump clean samples," using rigorous multiphase flow techniques. All of the methods are explained in complete detail. Equations are offered for users to incorporate in their own models, but, for those needing immediate answers, convenient, easy-to-use software is available. The lead author is a well-known petrophysicist with hands-on experience at Schlumberger, Halliburton, BP Exploration, and other companies. His work is used commercially at major oil service companies, and important extensions to his formation testing models have been supported by prestigious grants from the U.S. Department of Energy. His latest collaboration with China National Offshore Oil Corporation marks an important turning point, where advanced simulation models and hardware are evolving side-by-side, defining a new generation of formation testing logging instruments. Providing more than formulations and solutions, this book offers a close look at "behind the scenes" formation tester development, as the China National Offshore Oil Corporation opens up its research, engineering, and manufacturing facilities through a collection of never-before-seen photographs, showing how formation testing tools are developed from start to finish.
Publisher: Wiley-Scrivener
ISBN: 9781118831137
Category : Science
Languages : en
Pages : 0
Book Description
The only book available for the reservoir or petroleum engineer covering formation testing—with algorithms for wireline and LWD reservoir analysis developed for transient pressure, contamination modeling, permeability, and pore pressure prediction. Traditional well logging methods, such as resistivity, acoustic, nuclear, and NMR, provide indirect information relating to fluid and formation properties. However, the "formation tester" offered in wireline and MWD/LWD operations is different. It collects actual downhole fluid samples for surface analysis, and through pressure transient analysis, provides direct measurements for pore pressure, mobility, permeability, and anisotropy. These are vital to real-time drilling safety, geosteering, hydraulic fracturing, and economic analysis. Methods for formation testing analysis, while commercially important and accounting for a substantial part of service company profits, are shrouded in secrecy. Many are poorly constructed, and because details are not available, industry researchers are not able to improve on them. Formation Testing explains conventional models and develops new, more powerful algorithms for early-time analysis. More importantly, it addresses a critical area in sampling related to "time required to pump clean samples," using rigorous multiphase flow techniques. All of the methods are explained in complete detail. Equations are offered for users to incorporate in their own models, but, for those needing immediate answers, convenient, easy-to-use software is available. The lead author is a well-known petrophysicist with hands-on experience at Schlumberger, Halliburton, BP Exploration, and other companies. His work is used commercially at major oil service companies, and important extensions to his formation testing models have been supported by prestigious grants from the U.S. Department of Energy. His latest collaboration with China National Offshore Oil Corporation marks an important turning point, where advanced simulation models and hardware are evolving side-by-side, defining a new generation of formation testing logging instruments. Providing more than formulations and solutions, this book offers a close look at "behind the scenes" formation tester development, as the China National Offshore Oil Corporation opens up its research, engineering, and manufacturing facilities through a collection of never-before-seen photographs, showing how formation testing tools are developed from start to finish.
Multiprobe Pressure Analysis and Interpretation
Author: Tao Lu
Publisher: John Wiley & Sons
ISBN: 1119760666
Category : Science
Languages : en
Pages : 418
Book Description
A popular 1990s formation tester with a single "pumping" probe and one passive "observation port" displaced 180 deg away, designed to measure pressures at two locations for permeability prediction, encounters well known detection problems at low mobilities. This book, using aerodynamics methods, explains why and also reveals the existence of a wide stagnation zone that hides critical formation details. And it does much more. An exact analytical solution is used to validate a new transient, three-dimensional, finite difference model for more general testers, one that guides new hardware designs with independent azimuthally displaced probes having with different rates, flow schedules and nozzle geometries, supports interpretation and formation evaluation, and assists with job planning at the rigsite. The methods also apply to conventional tools, allowing comparisons between older and newer technologies. Importantly, the authors introduce a completely new three-probe design with independently operable active elements that eliminate all older tool deficiencies. Numerous subjects are discussed, such as pressure transient analyses with multiple operating probes, supercharge analysis with invasion and mudcake buildup, accurate and rapid calculations that allow more than 1,000 simulations per minute, extremely rapid batch mode calculations using convergence acceleration methods, rapid fluid withdrawal with minimal dissolved gas release, dip angle, heterogeneity and anisotropy evaluation, and many other topics. In addition, tool operation sequences, detailed engineering and design functions, field test procedures and laboratory facilities, are discussed and illustrated in photographs that go "behind the scenes" at one of the world’s largest international oil service companies. The book hopes to educate new engineers and veteran engineers alike in hardware and software design at a time when increasing efficiency is crucial and "doing more with less" represents the new norm.
Publisher: John Wiley & Sons
ISBN: 1119760666
Category : Science
Languages : en
Pages : 418
Book Description
A popular 1990s formation tester with a single "pumping" probe and one passive "observation port" displaced 180 deg away, designed to measure pressures at two locations for permeability prediction, encounters well known detection problems at low mobilities. This book, using aerodynamics methods, explains why and also reveals the existence of a wide stagnation zone that hides critical formation details. And it does much more. An exact analytical solution is used to validate a new transient, three-dimensional, finite difference model for more general testers, one that guides new hardware designs with independent azimuthally displaced probes having with different rates, flow schedules and nozzle geometries, supports interpretation and formation evaluation, and assists with job planning at the rigsite. The methods also apply to conventional tools, allowing comparisons between older and newer technologies. Importantly, the authors introduce a completely new three-probe design with independently operable active elements that eliminate all older tool deficiencies. Numerous subjects are discussed, such as pressure transient analyses with multiple operating probes, supercharge analysis with invasion and mudcake buildup, accurate and rapid calculations that allow more than 1,000 simulations per minute, extremely rapid batch mode calculations using convergence acceleration methods, rapid fluid withdrawal with minimal dissolved gas release, dip angle, heterogeneity and anisotropy evaluation, and many other topics. In addition, tool operation sequences, detailed engineering and design functions, field test procedures and laboratory facilities, are discussed and illustrated in photographs that go "behind the scenes" at one of the world’s largest international oil service companies. The book hopes to educate new engineers and veteran engineers alike in hardware and software design at a time when increasing efficiency is crucial and "doing more with less" represents the new norm.
Multiprobe Pressure Testing and Reservoir Characterization
Author: Wilson C Chin
Publisher: Elsevier
ISBN: 0443241120
Category : Science
Languages : en
Pages : 439
Book Description
Multiprobe Pressure Testing and Reservoir Characterization: Pressure Transient, Contamination, Liquid and Gas Pumping Analysis provides much-needed three-dimensional pressure transient simulators for job planning and data interpretation in well logging. Discussions cover fundamental concepts, present fluid sampling, pressure transient and contamination analysis; physical concepts and numerical approaches; and multiprobe model formulations and validations. Other sections cover four-probe algorithms, including conventional, overbalanced, and underbalanced drilling applications. The final section addresses triple-probe algorithms, which includes coupled models for pressure and contamination convergence acceleration. Notably, a further chapter explains how the multiprobe tool's focus on characterizing permeability will promote better use of the reservoir as well as assist with energy storage in underground rock, demonstrating how multiprobe tools also facilitate the energy transition from fossil fuels to sustainable geothermal energy. - Reviews present day needs, tool operations, and analysis methods, along with numerous practical examples and applications - Develops a suite of mathematical models, algorithms, and software from first principles - Explains, in detail, how multiprobe pressure logging is superior to using conventional sensors because direct, accurate reservoir characteristics support energy-efficient geothermal designs - Provides an alternative look at the investigation of unconventional reservoirs, not only in terms of hydrocarbon production, but also with carbon and energy storage in mind
Publisher: Elsevier
ISBN: 0443241120
Category : Science
Languages : en
Pages : 439
Book Description
Multiprobe Pressure Testing and Reservoir Characterization: Pressure Transient, Contamination, Liquid and Gas Pumping Analysis provides much-needed three-dimensional pressure transient simulators for job planning and data interpretation in well logging. Discussions cover fundamental concepts, present fluid sampling, pressure transient and contamination analysis; physical concepts and numerical approaches; and multiprobe model formulations and validations. Other sections cover four-probe algorithms, including conventional, overbalanced, and underbalanced drilling applications. The final section addresses triple-probe algorithms, which includes coupled models for pressure and contamination convergence acceleration. Notably, a further chapter explains how the multiprobe tool's focus on characterizing permeability will promote better use of the reservoir as well as assist with energy storage in underground rock, demonstrating how multiprobe tools also facilitate the energy transition from fossil fuels to sustainable geothermal energy. - Reviews present day needs, tool operations, and analysis methods, along with numerous practical examples and applications - Develops a suite of mathematical models, algorithms, and software from first principles - Explains, in detail, how multiprobe pressure logging is superior to using conventional sensors because direct, accurate reservoir characteristics support energy-efficient geothermal designs - Provides an alternative look at the investigation of unconventional reservoirs, not only in terms of hydrocarbon production, but also with carbon and energy storage in mind
Modern Borehole Analytics
Author: Wilson C. Chin
Publisher: John Wiley & Sons
ISBN: 1119284031
Category : Science
Languages : en
Pages : 447
Book Description
Written by a leading industry specialist, a must-have for drilling specialists, petroleum engineers, and field practitioners, this is the only book providing practical, rigorous and validated models for general annular flows, eccentric geometries, non-Newtonian fluids, yield stresses, multiphase effects, and transient motions and flow rates and includes new methods describing mudcake integrity and pore pressure for blowout assessment. Wilson C. Chin has written some of the most important and well-known books in the petroleum industry. These books, whose research was funded by the U.S. Department of Energy and several international petroleum corporations, have set very high standards. Many algorithms are used at leading oil service companies to support key drilling and well logging applications. For the first time, the physical models in these publications, founded on rigorous mathematics and numerical methods, are now available to the broader industry: students, petroleum engineers, drillers and faculty researchers. The presentations are written in easy-to-understand language, with few equations, offering simplified explanations of difficult problems and solutions which provide key insights into downhole physical phenomena through detailed tabulations and color graphics displays. Practical applications, such as cuttings transport, pressure control, mudcake integrity, formation effects in unconventional applications, and so on, are addressed in great detail, offering the most practical answers to everyday problems that the engineer encounters. The book does not stop at annular flow. In fact, the important role of mudcake growth and thickness in enabling steady flow in the annulus is considered, as is the role of (low) formation permeability in affecting mud filtration, cake growth, and fluid sealing at the sandface. This is the first publication addressing "the big picture," a "first" drawn from the author's related research in multiple disciplines such as drilling rheology, formation testing and reservoir simulation. A must-have for any petroleum engineer, petroleum professional, or student, this book is truly a groundbreaking volume that is sure to set new standards.
Publisher: John Wiley & Sons
ISBN: 1119284031
Category : Science
Languages : en
Pages : 447
Book Description
Written by a leading industry specialist, a must-have for drilling specialists, petroleum engineers, and field practitioners, this is the only book providing practical, rigorous and validated models for general annular flows, eccentric geometries, non-Newtonian fluids, yield stresses, multiphase effects, and transient motions and flow rates and includes new methods describing mudcake integrity and pore pressure for blowout assessment. Wilson C. Chin has written some of the most important and well-known books in the petroleum industry. These books, whose research was funded by the U.S. Department of Energy and several international petroleum corporations, have set very high standards. Many algorithms are used at leading oil service companies to support key drilling and well logging applications. For the first time, the physical models in these publications, founded on rigorous mathematics and numerical methods, are now available to the broader industry: students, petroleum engineers, drillers and faculty researchers. The presentations are written in easy-to-understand language, with few equations, offering simplified explanations of difficult problems and solutions which provide key insights into downhole physical phenomena through detailed tabulations and color graphics displays. Practical applications, such as cuttings transport, pressure control, mudcake integrity, formation effects in unconventional applications, and so on, are addressed in great detail, offering the most practical answers to everyday problems that the engineer encounters. The book does not stop at annular flow. In fact, the important role of mudcake growth and thickness in enabling steady flow in the annulus is considered, as is the role of (low) formation permeability in affecting mud filtration, cake growth, and fluid sealing at the sandface. This is the first publication addressing "the big picture," a "first" drawn from the author's related research in multiple disciplines such as drilling rheology, formation testing and reservoir simulation. A must-have for any petroleum engineer, petroleum professional, or student, this book is truly a groundbreaking volume that is sure to set new standards.
Measurement While Drilling
Author: Wilson C. Chin
Publisher: John Wiley & Sons
ISBN: 1119479363
Category : Science
Languages : en
Pages : 525
Book Description
Trade magazines and review articles describe MWD in casual terms, e.g., positive versus negative pulsers, continuous wave systems, drilling channel noise and attenuation, in very simple terms absent of technical rigor. However, few truly scientific discussions are available on existing methods, let alone the advances necessary for high-data-rate telemetry. Without a strong foundation building on solid acoustic principles, rigorous mathematics, and of course, fast, inexpensive and efficient testing of mechanical designs, low data rates will impose unacceptable quality issues to real-time formation evaluation for years to come. This all-new revised second edition of an instant classic promises to change all of this. The lead author and M.I.T.-educated scientist, Wilson Chin, has written the only book available that develops mud pulse telemetry from first principles, adapting sound acoustic principles to rigorous signal processing and efficient wind tunnel testing. In fact, the methods and telemetry principles developed in the book were recently adopted by one of the world's largest industrial corporations in its mission to redefine the face of MWD. The entire engineering history for continuous wave telemetry is covered: anecdotal stories and their fallacies, original hardware problems and their solutions, different noise mechanisms and their signal processing solutions, apparent paradoxes encountered in field tests and simple explanations to complicated questions, and so on, are discussed in complete "tell all" detail for students, research professors and professional engineers alike. These include signal processing algorithms, signal enhancement methods, and highly efficient "short" and "long wind tunnel" test methods, whose results can be dynamically re-scaled to real muds flowing at any speed. A must read for all petroleum engineering professionals!
Publisher: John Wiley & Sons
ISBN: 1119479363
Category : Science
Languages : en
Pages : 525
Book Description
Trade magazines and review articles describe MWD in casual terms, e.g., positive versus negative pulsers, continuous wave systems, drilling channel noise and attenuation, in very simple terms absent of technical rigor. However, few truly scientific discussions are available on existing methods, let alone the advances necessary for high-data-rate telemetry. Without a strong foundation building on solid acoustic principles, rigorous mathematics, and of course, fast, inexpensive and efficient testing of mechanical designs, low data rates will impose unacceptable quality issues to real-time formation evaluation for years to come. This all-new revised second edition of an instant classic promises to change all of this. The lead author and M.I.T.-educated scientist, Wilson Chin, has written the only book available that develops mud pulse telemetry from first principles, adapting sound acoustic principles to rigorous signal processing and efficient wind tunnel testing. In fact, the methods and telemetry principles developed in the book were recently adopted by one of the world's largest industrial corporations in its mission to redefine the face of MWD. The entire engineering history for continuous wave telemetry is covered: anecdotal stories and their fallacies, original hardware problems and their solutions, different noise mechanisms and their signal processing solutions, apparent paradoxes encountered in field tests and simple explanations to complicated questions, and so on, are discussed in complete "tell all" detail for students, research professors and professional engineers alike. These include signal processing algorithms, signal enhancement methods, and highly efficient "short" and "long wind tunnel" test methods, whose results can be dynamically re-scaled to real muds flowing at any speed. A must read for all petroleum engineering professionals!
Wave Propagation in Drilling, Well Logging and Reservoir Applications
Author: Wilson C. Chin
Publisher: John Wiley & Sons
ISBN: 1118925904
Category : Science
Languages : en
Pages : 374
Book Description
Wave propagation is central to all areas of petroleum engineering, e.g., drilling vibrations, MWD mud pulse telemetry, swab-surge, geophysical ray tracing, ocean and current interactions, electromagnetic wave and sonic applications in the borehole, but rarely treated rigorously or described in truly scientific terms, even for a single discipline. Wilson Chin, an MIT and Caltech educated scientist who has consulted internationally, provides an integrated, comprehensive, yet readable exposition covering all of the cited topics, offering insights, algorithms and validated methods never before published. A must on every petroleum engineering bookshelf! In particular, the book: Delivers drillstring vibrations models coupling axial, torsional and lateral motions that predict rate-of-penetration, bit bounce and stick-slip as they depend on rock-bit interaction and bottomhole assembly properties, Explains why catastrophic lateral vibrations at the neutral point cannot be observed from the surface even in vertical wells, but providing a proven method to avoid them, Demonstrates why Fermat's "principle of least time" (used in geophysics) applies to non-dissipative media only, but using the "kinematic wave theory" developed at MIT, derives powerful methods applicable to general attenuative inhomogeneous media, Develops new approaches to mud acoustics and applying them to MWD telemetry modeling and strong transients in modern swab-surge applicagtions, Derives new algorithms for borehole geophysics interpretation, e.g., Rh and Rv in electromagnetic wave and permeability in Stoneley waveform analysis, and Outlines many more applications, e.g., wave loadings on offshore platforms, classical problems in wave propagation, and extensions to modern kinematic wave theory. These disciplines, important to all field-oriented activities, are not treated as finite element applications that are simply gridded, "number-crunched" and displayed, but as scientific disciplines deserving of clear explanation. General results are carefully motivated, derived and applied to real-world problems, with results demonstrating the importance and predictive capabilities of the new methods.
Publisher: John Wiley & Sons
ISBN: 1118925904
Category : Science
Languages : en
Pages : 374
Book Description
Wave propagation is central to all areas of petroleum engineering, e.g., drilling vibrations, MWD mud pulse telemetry, swab-surge, geophysical ray tracing, ocean and current interactions, electromagnetic wave and sonic applications in the borehole, but rarely treated rigorously or described in truly scientific terms, even for a single discipline. Wilson Chin, an MIT and Caltech educated scientist who has consulted internationally, provides an integrated, comprehensive, yet readable exposition covering all of the cited topics, offering insights, algorithms and validated methods never before published. A must on every petroleum engineering bookshelf! In particular, the book: Delivers drillstring vibrations models coupling axial, torsional and lateral motions that predict rate-of-penetration, bit bounce and stick-slip as they depend on rock-bit interaction and bottomhole assembly properties, Explains why catastrophic lateral vibrations at the neutral point cannot be observed from the surface even in vertical wells, but providing a proven method to avoid them, Demonstrates why Fermat's "principle of least time" (used in geophysics) applies to non-dissipative media only, but using the "kinematic wave theory" developed at MIT, derives powerful methods applicable to general attenuative inhomogeneous media, Develops new approaches to mud acoustics and applying them to MWD telemetry modeling and strong transients in modern swab-surge applicagtions, Derives new algorithms for borehole geophysics interpretation, e.g., Rh and Rv in electromagnetic wave and permeability in Stoneley waveform analysis, and Outlines many more applications, e.g., wave loadings on offshore platforms, classical problems in wave propagation, and extensions to modern kinematic wave theory. These disciplines, important to all field-oriented activities, are not treated as finite element applications that are simply gridded, "number-crunched" and displayed, but as scientific disciplines deserving of clear explanation. General results are carefully motivated, derived and applied to real-world problems, with results demonstrating the importance and predictive capabilities of the new methods.
Modern Aerodynamic Methods for Direct and Inverse Applications
Author: Wilson C. Chin
Publisher: John Wiley & Sons
ISBN: 1119580560
Category : Technology & Engineering
Languages : en
Pages : 440
Book Description
A powerful new monograph from an aerodynamicist reviewing modern conventional aerodynamic approaches, this volume covers aspects of subsonic, transonic and supersonic flow, inverse problems, shear flow analysis, jet engine power addition, engine and airframe integration, and other areas, providing readers with the tools needed to evaluate their own ideas and to implement the newer methods suggested in this book. This new book, by a prolific fluid-dynamicist and mathematician who has published more than twenty research monographs, represents not just another contribution to aerodynamics, but a book that raises serious questions about traditionally accepted approaches and formulations, providing new methods that solve longstanding problems of importance to the industry. While both conventional and newer ideas are discussed, the presentations are readable and geared to advanced undergraduates with exposure to elementary differential equations and introductory aerodynamics principles. Readers are introduced to fundamental algorithms (with Fortran source code) for basic applications, such as subsonic lifting airfoils, transonic supercritical flows utilizing mixed differencing, models for inviscid shear flow aerodynamics, and so on. These are models they can extend to include newer effects developed in the second half of the book. Many of the newer methods have appeared over the years in various journals and are now presented with deeper perspective and integration. This book helps readers approach the literature more critically. Rather than simply understanding an approach, for instance, the powerful "type differencing" behind transonic analysis, or the rationale behind "conservative" formulations, or the use of Euler equation methods for shear flow analysis when they are unnecessary, the author guides and motivates the user to ask why and why not and what if. And often, more powerful methods can be developed using no more than simple mathematical manipulations. For example, Cauchy-Riemann conditions, which are powerful tools in subsonic airfoil theory, can be readily extended to handle compressible flows with shocks, rotational flows, and even three-dimensional wing flowfields, in a variety of applications, to produce powerful formulations that address very difficult problems. This breakthrough volume is certainly a "must have" on every engineer's bookshelf.
Publisher: John Wiley & Sons
ISBN: 1119580560
Category : Technology & Engineering
Languages : en
Pages : 440
Book Description
A powerful new monograph from an aerodynamicist reviewing modern conventional aerodynamic approaches, this volume covers aspects of subsonic, transonic and supersonic flow, inverse problems, shear flow analysis, jet engine power addition, engine and airframe integration, and other areas, providing readers with the tools needed to evaluate their own ideas and to implement the newer methods suggested in this book. This new book, by a prolific fluid-dynamicist and mathematician who has published more than twenty research monographs, represents not just another contribution to aerodynamics, but a book that raises serious questions about traditionally accepted approaches and formulations, providing new methods that solve longstanding problems of importance to the industry. While both conventional and newer ideas are discussed, the presentations are readable and geared to advanced undergraduates with exposure to elementary differential equations and introductory aerodynamics principles. Readers are introduced to fundamental algorithms (with Fortran source code) for basic applications, such as subsonic lifting airfoils, transonic supercritical flows utilizing mixed differencing, models for inviscid shear flow aerodynamics, and so on. These are models they can extend to include newer effects developed in the second half of the book. Many of the newer methods have appeared over the years in various journals and are now presented with deeper perspective and integration. This book helps readers approach the literature more critically. Rather than simply understanding an approach, for instance, the powerful "type differencing" behind transonic analysis, or the rationale behind "conservative" formulations, or the use of Euler equation methods for shear flow analysis when they are unnecessary, the author guides and motivates the user to ask why and why not and what if. And often, more powerful methods can be developed using no more than simple mathematical manipulations. For example, Cauchy-Riemann conditions, which are powerful tools in subsonic airfoil theory, can be readily extended to handle compressible flows with shocks, rotational flows, and even three-dimensional wing flowfields, in a variety of applications, to produce powerful formulations that address very difficult problems. This breakthrough volume is certainly a "must have" on every engineer's bookshelf.
Reservoir Simulation and Well Interference
Author: Wilson C. Chin
Publisher: John Wiley & Sons
ISBN: 1119283442
Category : Science
Languages : en
Pages : 404
Book Description
Co-written by a world-renowned petroleum engineer, this breakthrough new volume teaches engineers how to configure, place and produce horizontal and multilateral wells in geologically complicated reservoirs, select optimal well spacings and fracture separations, and how to manage factors influencing well productivity using proven cost-effective and user-friendly simulation methods. Charged in the 1990s with solving some of petroleum engineering's biggest problems that the industry deemed "unsolvable," the authors of this innovative new volume solved those problems, not just using a well-published math model, but one optimized to run rapidly, the first time, every time. This not only provides numerical output, but production curves and color pressure plots automatically. And each in a single hour of desk time. Using their Multisim software that is featured in this volume, secondary school students at the Aldine Independent School District delivered professional quality simulations in a training program funded by some of the largest energy companies in the world. Think what you, as a professional engineer, could do in your daily work. Valuable with or without the software, this volume is the cutting-edge of reservoir engineering today, prefacing each chapter with a "trade journal summary" followed by hands-on details, allowing readers to replicate and extend results for their own applications. This volume covers parent-child, multilateral well, and fracture flow interactions, reservoir flow analysis, many other issues involving fluid flow, fracturing, and many other common "unsolvable" problems that engineers encounter every day. It is a must-have for every engineer's bookshelf.
Publisher: John Wiley & Sons
ISBN: 1119283442
Category : Science
Languages : en
Pages : 404
Book Description
Co-written by a world-renowned petroleum engineer, this breakthrough new volume teaches engineers how to configure, place and produce horizontal and multilateral wells in geologically complicated reservoirs, select optimal well spacings and fracture separations, and how to manage factors influencing well productivity using proven cost-effective and user-friendly simulation methods. Charged in the 1990s with solving some of petroleum engineering's biggest problems that the industry deemed "unsolvable," the authors of this innovative new volume solved those problems, not just using a well-published math model, but one optimized to run rapidly, the first time, every time. This not only provides numerical output, but production curves and color pressure plots automatically. And each in a single hour of desk time. Using their Multisim software that is featured in this volume, secondary school students at the Aldine Independent School District delivered professional quality simulations in a training program funded by some of the largest energy companies in the world. Think what you, as a professional engineer, could do in your daily work. Valuable with or without the software, this volume is the cutting-edge of reservoir engineering today, prefacing each chapter with a "trade journal summary" followed by hands-on details, allowing readers to replicate and extend results for their own applications. This volume covers parent-child, multilateral well, and fracture flow interactions, reservoir flow analysis, many other issues involving fluid flow, fracturing, and many other common "unsolvable" problems that engineers encounter every day. It is a must-have for every engineer's bookshelf.
i-Smooth Analysis
Author: A. V. Kim
Publisher: John Wiley & Sons
ISBN: 1118998545
Category : Mathematics
Languages : en
Pages : 298
Book Description
i-SMOOTH ANALYSIS A totally new direction in mathematics, this revolutionary new study introduces a new class of invariant derivatives of functions and establishes relations with other derivatives, such as the Sobolev generalized derivative and the generalized derivative of the distribution theory. i-smooth analysis is the branch of functional analysis that considers the theory and applications of the invariant derivatives of functions and functionals. The important direction of i-smooth analysis is the investigation of the relation of invariant derivatives with the Sobolev generalized derivative and the generalized derivative of distribution theory. Until now, i-smooth analysis has been developed mainly to apply to the theory of functional differential equations, and the goal of this book is to present i-smooth analysis as a branch of functional analysis. The notion of the invariant derivative (i-derivative) of nonlinear functionals has been introduced in mathematics, and this in turn developed the corresponding i-smooth calculus of functionals and showed that for linear continuous functionals the invariant derivative coincides with the generalized derivative of the distribution theory. This book intends to introduce this theory to the general mathematics, engineering, and physicist communities. i-Smooth Analysis: Theory and Applications Introduces a new class of derivatives of functions and functionals, a revolutionary new approach Establishes a relationship with the generalized Sobolev derivative and the generalized derivative of the distribution theory Presents the complete theory of i-smooth analysis Contains the theory of FDE numerical method, based on i-smooth analysis Explores a new direction of i-smooth analysis, the theory of the invariant derivative of functions Is of interest to all mathematicians, engineers studying processes with delays, and physicists who study hereditary phenomena in nature. AUDIENCE Mathematicians, applied mathematicians, engineers , physicists, students in mathematics
Publisher: John Wiley & Sons
ISBN: 1118998545
Category : Mathematics
Languages : en
Pages : 298
Book Description
i-SMOOTH ANALYSIS A totally new direction in mathematics, this revolutionary new study introduces a new class of invariant derivatives of functions and establishes relations with other derivatives, such as the Sobolev generalized derivative and the generalized derivative of the distribution theory. i-smooth analysis is the branch of functional analysis that considers the theory and applications of the invariant derivatives of functions and functionals. The important direction of i-smooth analysis is the investigation of the relation of invariant derivatives with the Sobolev generalized derivative and the generalized derivative of distribution theory. Until now, i-smooth analysis has been developed mainly to apply to the theory of functional differential equations, and the goal of this book is to present i-smooth analysis as a branch of functional analysis. The notion of the invariant derivative (i-derivative) of nonlinear functionals has been introduced in mathematics, and this in turn developed the corresponding i-smooth calculus of functionals and showed that for linear continuous functionals the invariant derivative coincides with the generalized derivative of the distribution theory. This book intends to introduce this theory to the general mathematics, engineering, and physicist communities. i-Smooth Analysis: Theory and Applications Introduces a new class of derivatives of functions and functionals, a revolutionary new approach Establishes a relationship with the generalized Sobolev derivative and the generalized derivative of the distribution theory Presents the complete theory of i-smooth analysis Contains the theory of FDE numerical method, based on i-smooth analysis Explores a new direction of i-smooth analysis, the theory of the invariant derivative of functions Is of interest to all mathematicians, engineers studying processes with delays, and physicists who study hereditary phenomena in nature. AUDIENCE Mathematicians, applied mathematicians, engineers , physicists, students in mathematics