Author: John Törnblom
Publisher: Linköping University Electronic Press
ISBN: 917929748X
Category : Electronic books
Languages : en
Pages : 41
Book Description
In the presence of data and computational resources, machine learning can be used to synthesize software automatically. For example, machines are now capable of learning complicated pattern recognition tasks and sophisticated decision policies, two key capabilities in autonomous cyber-physical systems. Unfortunately, humans find software synthesized by machine learning algorithms difficult to interpret, which currently limits their use in safety-critical applications such as medical diagnosis and avionic systems. In particular, successful deployments of safety-critical systems mandate the execution of rigorous verification activities, which often rely on human insights, e.g., to identify scenarios in which the system shall be tested. A natural pathway towards a viable verification strategy for such systems is to leverage formal verification techniques, which, in the presence of a formal specification, can provide definitive guarantees with little human intervention. However, formal verification suffers from scalability issues with respect to system complexity. In this thesis, we investigate the limits of current formal verification techniques when applied to a class of machine learning models called tree ensembles, and identify model-specific characteristics that can be exploited to improve the performance of verification algorithms when applied specifically to tree ensembles. To this end, we develop two formal verification techniques specifically for tree ensembles, one fast and conservative technique, and one exact but more computationally demanding. We then combine these two techniques into an abstraction-refinement approach, that we implement in a tool called VoTE (Verifier of Tree Ensembles). Using a couple of case studies, we recognize that sets of inputs that lead to the same system behavior can be captured precisely as hyperrectangles, which enables tractable enumeration of input-output mappings when the input dimension is low. Tree ensembles with a high-dimensional input domain, however, seems generally difficult to verify. In some cases though, conservative approximations of input-output mappings can greatly improve performance. This is demonstrated in a digit recognition case study, where we assess the robustness of classifiers when confronted with additive noise.
Formal Verification of Tree Ensembles in Safety-Critical Applications
Author: John Törnblom
Publisher: Linköping University Electronic Press
ISBN: 917929748X
Category : Electronic books
Languages : en
Pages : 41
Book Description
In the presence of data and computational resources, machine learning can be used to synthesize software automatically. For example, machines are now capable of learning complicated pattern recognition tasks and sophisticated decision policies, two key capabilities in autonomous cyber-physical systems. Unfortunately, humans find software synthesized by machine learning algorithms difficult to interpret, which currently limits their use in safety-critical applications such as medical diagnosis and avionic systems. In particular, successful deployments of safety-critical systems mandate the execution of rigorous verification activities, which often rely on human insights, e.g., to identify scenarios in which the system shall be tested. A natural pathway towards a viable verification strategy for such systems is to leverage formal verification techniques, which, in the presence of a formal specification, can provide definitive guarantees with little human intervention. However, formal verification suffers from scalability issues with respect to system complexity. In this thesis, we investigate the limits of current formal verification techniques when applied to a class of machine learning models called tree ensembles, and identify model-specific characteristics that can be exploited to improve the performance of verification algorithms when applied specifically to tree ensembles. To this end, we develop two formal verification techniques specifically for tree ensembles, one fast and conservative technique, and one exact but more computationally demanding. We then combine these two techniques into an abstraction-refinement approach, that we implement in a tool called VoTE (Verifier of Tree Ensembles). Using a couple of case studies, we recognize that sets of inputs that lead to the same system behavior can be captured precisely as hyperrectangles, which enables tractable enumeration of input-output mappings when the input dimension is low. Tree ensembles with a high-dimensional input domain, however, seems generally difficult to verify. In some cases though, conservative approximations of input-output mappings can greatly improve performance. This is demonstrated in a digit recognition case study, where we assess the robustness of classifiers when confronted with additive noise.
Publisher: Linköping University Electronic Press
ISBN: 917929748X
Category : Electronic books
Languages : en
Pages : 41
Book Description
In the presence of data and computational resources, machine learning can be used to synthesize software automatically. For example, machines are now capable of learning complicated pattern recognition tasks and sophisticated decision policies, two key capabilities in autonomous cyber-physical systems. Unfortunately, humans find software synthesized by machine learning algorithms difficult to interpret, which currently limits their use in safety-critical applications such as medical diagnosis and avionic systems. In particular, successful deployments of safety-critical systems mandate the execution of rigorous verification activities, which often rely on human insights, e.g., to identify scenarios in which the system shall be tested. A natural pathway towards a viable verification strategy for such systems is to leverage formal verification techniques, which, in the presence of a formal specification, can provide definitive guarantees with little human intervention. However, formal verification suffers from scalability issues with respect to system complexity. In this thesis, we investigate the limits of current formal verification techniques when applied to a class of machine learning models called tree ensembles, and identify model-specific characteristics that can be exploited to improve the performance of verification algorithms when applied specifically to tree ensembles. To this end, we develop two formal verification techniques specifically for tree ensembles, one fast and conservative technique, and one exact but more computationally demanding. We then combine these two techniques into an abstraction-refinement approach, that we implement in a tool called VoTE (Verifier of Tree Ensembles). Using a couple of case studies, we recognize that sets of inputs that lead to the same system behavior can be captured precisely as hyperrectangles, which enables tractable enumeration of input-output mappings when the input dimension is low. Tree ensembles with a high-dimensional input domain, however, seems generally difficult to verify. In some cases though, conservative approximations of input-output mappings can greatly improve performance. This is demonstrated in a digit recognition case study, where we assess the robustness of classifiers when confronted with additive noise.
ECAI 2023
Author: K. Gal
Publisher: IOS Press
ISBN: 164368437X
Category : Computers
Languages : en
Pages : 3328
Book Description
Artificial intelligence, or AI, now affects the day-to-day life of almost everyone on the planet, and continues to be a perennial hot topic in the news. This book presents the proceedings of ECAI 2023, the 26th European Conference on Artificial Intelligence, and of PAIS 2023, the 12th Conference on Prestigious Applications of Intelligent Systems, held from 30 September to 4 October 2023 and on 3 October 2023 respectively in Kraków, Poland. Since 1974, ECAI has been the premier venue for presenting AI research in Europe, and this annual conference has become the place for researchers and practitioners of AI to discuss the latest trends and challenges in all subfields of AI, and to demonstrate innovative applications and uses of advanced AI technology. ECAI 2023 received 1896 submissions – a record number – of which 1691 were retained for review, ultimately resulting in an acceptance rate of 23%. The 390 papers included here, cover topics including machine learning, natural language processing, multi agent systems, and vision and knowledge representation and reasoning. PAIS 2023 received 17 submissions, of which 10 were accepted after a rigorous review process. Those 10 papers cover topics ranging from fostering better working environments, behavior modeling and citizen science to large language models and neuro-symbolic applications, and are also included here. Presenting a comprehensive overview of current research and developments in AI, the book will be of interest to all those working in the field.
Publisher: IOS Press
ISBN: 164368437X
Category : Computers
Languages : en
Pages : 3328
Book Description
Artificial intelligence, or AI, now affects the day-to-day life of almost everyone on the planet, and continues to be a perennial hot topic in the news. This book presents the proceedings of ECAI 2023, the 26th European Conference on Artificial Intelligence, and of PAIS 2023, the 12th Conference on Prestigious Applications of Intelligent Systems, held from 30 September to 4 October 2023 and on 3 October 2023 respectively in Kraków, Poland. Since 1974, ECAI has been the premier venue for presenting AI research in Europe, and this annual conference has become the place for researchers and practitioners of AI to discuss the latest trends and challenges in all subfields of AI, and to demonstrate innovative applications and uses of advanced AI technology. ECAI 2023 received 1896 submissions – a record number – of which 1691 were retained for review, ultimately resulting in an acceptance rate of 23%. The 390 papers included here, cover topics including machine learning, natural language processing, multi agent systems, and vision and knowledge representation and reasoning. PAIS 2023 received 17 submissions, of which 10 were accepted after a rigorous review process. Those 10 papers cover topics ranging from fostering better working environments, behavior modeling and citizen science to large language models and neuro-symbolic applications, and are also included here. Presenting a comprehensive overview of current research and developments in AI, the book will be of interest to all those working in the field.
Ensemble Machine Learning
Author: Cha Zhang
Publisher: Springer Science & Business Media
ISBN: 1441993258
Category : Computers
Languages : en
Pages : 332
Book Description
It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics. Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike.
Publisher: Springer Science & Business Media
ISBN: 1441993258
Category : Computers
Languages : en
Pages : 332
Book Description
It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics. Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike.
PROCEEDINGS OF THE 22ND CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED DESIGN – FMCAD 2022
Author: Alberto Griggio
Publisher: TU Wien Academic Press
ISBN: 3854480539
Category : Computers
Languages : en
Pages : 405
Book Description
The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system testing.
Publisher: TU Wien Academic Press
ISBN: 3854480539
Category : Computers
Languages : en
Pages : 405
Book Description
The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system testing.
CENELEC 50128 and IEC 62279 Standards
Author: Jean-Louis Boulanger
Publisher: John Wiley & Sons
ISBN: 1119122481
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
CENELEC EN 50128 and IEC 62279 standards are applicable to the performance of software in the railway sector. The 2011 version of the 50128 standard firms up the techniques and methods to be implemented. This is a guide to its implementation, in order to understand the foundations of the standard and how it impacts on the activities to be undertaken, helping towards better a preparation for the independent evaluation phase, which is mandatory.
Publisher: John Wiley & Sons
ISBN: 1119122481
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
CENELEC EN 50128 and IEC 62279 standards are applicable to the performance of software in the railway sector. The 2011 version of the 50128 standard firms up the techniques and methods to be implemented. This is a guide to its implementation, in order to understand the foundations of the standard and how it impacts on the activities to be undertaken, helping towards better a preparation for the independent evaluation phase, which is mandatory.
Methods and Procedures for the Verification and Validation of Artificial Neural Networks
Author: Brian J. Taylor
Publisher: Springer Science & Business Media
ISBN: 9780387282886
Category : Computers
Languages : en
Pages : 300
Book Description
Neural networks are members of a class of software that have the potential to enable intelligent computational systems capable of simulating characteristics of biological thinking and learning. This volume introduces some of the methods and techniques used for the verification and validation of neural networks and adaptive systems.
Publisher: Springer Science & Business Media
ISBN: 9780387282886
Category : Computers
Languages : en
Pages : 300
Book Description
Neural networks are members of a class of software that have the potential to enable intelligent computational systems capable of simulating characteristics of biological thinking and learning. This volume introduces some of the methods and techniques used for the verification and validation of neural networks and adaptive systems.
Formal Hardware Verification
Author: Thomas Kropf
Publisher: Springer Science & Business Media
ISBN: 9783540634751
Category : Computers
Languages : en
Pages : 388
Book Description
This state-of-the-art monograph presents a coherent survey of a variety of methods and systems for formal hardware verification. It emphasizes the presentation of approaches that have matured into tools and systems usable for the actual verification of nontrivial circuits. All in all, the book is a representative and well-structured survey on the success and future potential of formal methods in proving the correctness of circuits. The various chapters describe the respective approaches supplying theoretical foundations as well as taking into account the application viewpoint. By applying all methods and systems presented to the same set of IFIP WG10.5 hardware verification examples, a valuable and fair analysis of the strenghts and weaknesses of the various approaches is given.
Publisher: Springer Science & Business Media
ISBN: 9783540634751
Category : Computers
Languages : en
Pages : 388
Book Description
This state-of-the-art monograph presents a coherent survey of a variety of methods and systems for formal hardware verification. It emphasizes the presentation of approaches that have matured into tools and systems usable for the actual verification of nontrivial circuits. All in all, the book is a representative and well-structured survey on the success and future potential of formal methods in proving the correctness of circuits. The various chapters describe the respective approaches supplying theoretical foundations as well as taking into account the application viewpoint. By applying all methods and systems presented to the same set of IFIP WG10.5 hardware verification examples, a valuable and fair analysis of the strenghts and weaknesses of the various approaches is given.
Agents and Robots for reliable Engineered Autonomy
Author: Angelo Ferrando
Publisher: Springer Nature
ISBN: 3031731808
Category :
Languages : en
Pages : 175
Book Description
Publisher: Springer Nature
ISBN: 3031731808
Category :
Languages : en
Pages : 175
Book Description
NUREG/CR.
Author: U.S. Nuclear Regulatory Commission
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 140
Book Description
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 140
Book Description
Model Checking, second edition
Author: Edmund M. Clarke, Jr.
Publisher: MIT Press
ISBN: 0262349450
Category : Computers
Languages : en
Pages : 423
Book Description
An expanded and updated edition of a comprehensive presentation of the theory and practice of model checking, a technology that automates the analysis of complex systems. Model checking is a verification technology that provides an algorithmic means of determining whether an abstract model—representing, for example, a hardware or software design—satisfies a formal specification expressed as a temporal logic formula. If the specification is not satisfied, the method identifies a counterexample execution that shows the source of the problem. Today, many major hardware and software companies use model checking in practice, for verification of VLSI circuits, communication protocols, software device drivers, real-time embedded systems, and security algorithms. This book offers a comprehensive presentation of the theory and practice of model checking, covering the foundations of the key algorithms in depth. The field of model checking has grown dramatically since the publication of the first edition in 1999, and this second edition reflects the advances in the field. Reorganized, expanded, and updated, the new edition retains the focus on the foundations of temporal logic model while offering new chapters that cover topics that did not exist in 1999: propositional satisfiability, SAT-based model checking, counterexample-guided abstraction refinement, and software model checking. The book serves as an introduction to the field suitable for classroom use and as an essential guide for researchers.
Publisher: MIT Press
ISBN: 0262349450
Category : Computers
Languages : en
Pages : 423
Book Description
An expanded and updated edition of a comprehensive presentation of the theory and practice of model checking, a technology that automates the analysis of complex systems. Model checking is a verification technology that provides an algorithmic means of determining whether an abstract model—representing, for example, a hardware or software design—satisfies a formal specification expressed as a temporal logic formula. If the specification is not satisfied, the method identifies a counterexample execution that shows the source of the problem. Today, many major hardware and software companies use model checking in practice, for verification of VLSI circuits, communication protocols, software device drivers, real-time embedded systems, and security algorithms. This book offers a comprehensive presentation of the theory and practice of model checking, covering the foundations of the key algorithms in depth. The field of model checking has grown dramatically since the publication of the first edition in 1999, and this second edition reflects the advances in the field. Reorganized, expanded, and updated, the new edition retains the focus on the foundations of temporal logic model while offering new chapters that cover topics that did not exist in 1999: propositional satisfiability, SAT-based model checking, counterexample-guided abstraction refinement, and software model checking. The book serves as an introduction to the field suitable for classroom use and as an essential guide for researchers.