Author: John A. Flores
Publisher:
ISBN: 9781613242858
Category : Artificial intelligence
Languages : en
Pages : 410
Book Description
This book gathers the most current research from across the globe in the study of artificial neural networks. Topics discussed include artificial neural networks in environmental sciences and chemical engineering; application of artificial neural networks in the development of pharamceutical microemulsions; massive-training artificial neural networks for supervised enhancement/suppression of lesions/patterns in medical images; evidences of new biophysical properties of microtubules; neural network applications in modern induction machine control systems and wavelet neural networks.
Focus on Artificial Neural Networks
Author: John A. Flores
Publisher:
ISBN: 9781613242858
Category : Artificial intelligence
Languages : en
Pages : 410
Book Description
This book gathers the most current research from across the globe in the study of artificial neural networks. Topics discussed include artificial neural networks in environmental sciences and chemical engineering; application of artificial neural networks in the development of pharamceutical microemulsions; massive-training artificial neural networks for supervised enhancement/suppression of lesions/patterns in medical images; evidences of new biophysical properties of microtubules; neural network applications in modern induction machine control systems and wavelet neural networks.
Publisher:
ISBN: 9781613242858
Category : Artificial intelligence
Languages : en
Pages : 410
Book Description
This book gathers the most current research from across the globe in the study of artificial neural networks. Topics discussed include artificial neural networks in environmental sciences and chemical engineering; application of artificial neural networks in the development of pharamceutical microemulsions; massive-training artificial neural networks for supervised enhancement/suppression of lesions/patterns in medical images; evidences of new biophysical properties of microtubules; neural network applications in modern induction machine control systems and wavelet neural networks.
Elements of Artificial Neural Networks
Author: Kishan Mehrotra
Publisher: MIT Press
ISBN: 9780262133289
Category : Computers
Languages : en
Pages : 376
Book Description
Elements of Artificial Neural Networks provides a clearly organized general introduction, focusing on a broad range of algorithms, for students and others who want to use neural networks rather than simply study them. The authors, who have been developing and team teaching the material in a one-semester course over the past six years, describe most of the basic neural network models (with several detailed solved examples) and discuss the rationale and advantages of the models, as well as their limitations. The approach is practical and open-minded and requires very little mathematical or technical background. Written from a computer science and statistics point of view, the text stresses links to contiguous fields and can easily serve as a first course for students in economics and management. The opening chapter sets the stage, presenting the basic concepts in a clear and objective way and tackling important -- yet rarely addressed -- questions related to the use of neural networks in practical situations. Subsequent chapters on supervised learning (single layer and multilayer networks), unsupervised learning, and associative models are structured around classes of problems to which networks can be applied. Applications are discussed along with the algorithms. A separate chapter takes up optimization methods. The most frequently used algorithms, such as backpropagation, are introduced early on, right after perceptrons, so that these can form the basis for initiating course projects. Algorithms published as late as 1995 are also included. All of the algorithms are presented using block-structured pseudo-code, and exercises are provided throughout. Software implementing many commonly used neural network algorithms is available at the book's website. Transparency masters, including abbreviated text and figures for the entire book, are available for instructors using the text.
Publisher: MIT Press
ISBN: 9780262133289
Category : Computers
Languages : en
Pages : 376
Book Description
Elements of Artificial Neural Networks provides a clearly organized general introduction, focusing on a broad range of algorithms, for students and others who want to use neural networks rather than simply study them. The authors, who have been developing and team teaching the material in a one-semester course over the past six years, describe most of the basic neural network models (with several detailed solved examples) and discuss the rationale and advantages of the models, as well as their limitations. The approach is practical and open-minded and requires very little mathematical or technical background. Written from a computer science and statistics point of view, the text stresses links to contiguous fields and can easily serve as a first course for students in economics and management. The opening chapter sets the stage, presenting the basic concepts in a clear and objective way and tackling important -- yet rarely addressed -- questions related to the use of neural networks in practical situations. Subsequent chapters on supervised learning (single layer and multilayer networks), unsupervised learning, and associative models are structured around classes of problems to which networks can be applied. Applications are discussed along with the algorithms. A separate chapter takes up optimization methods. The most frequently used algorithms, such as backpropagation, are introduced early on, right after perceptrons, so that these can form the basis for initiating course projects. Algorithms published as late as 1995 are also included. All of the algorithms are presented using block-structured pseudo-code, and exercises are provided throughout. Software implementing many commonly used neural network algorithms is available at the book's website. Transparency masters, including abbreviated text and figures for the entire book, are available for instructors using the text.
Machine Learning with Neural Networks
Author: Bernhard Mehlig
Publisher: Cambridge University Press
ISBN: 1108849563
Category : Science
Languages : en
Pages : 262
Book Description
This modern and self-contained book offers a clear and accessible introduction to the important topic of machine learning with neural networks. In addition to describing the mathematical principles of the topic, and its historical evolution, strong connections are drawn with underlying methods from statistical physics and current applications within science and engineering. Closely based around a well-established undergraduate course, this pedagogical text provides a solid understanding of the key aspects of modern machine learning with artificial neural networks, for students in physics, mathematics, and engineering. Numerous exercises expand and reinforce key concepts within the book and allow students to hone their programming skills. Frequent references to current research develop a detailed perspective on the state-of-the-art in machine learning research.
Publisher: Cambridge University Press
ISBN: 1108849563
Category : Science
Languages : en
Pages : 262
Book Description
This modern and self-contained book offers a clear and accessible introduction to the important topic of machine learning with neural networks. In addition to describing the mathematical principles of the topic, and its historical evolution, strong connections are drawn with underlying methods from statistical physics and current applications within science and engineering. Closely based around a well-established undergraduate course, this pedagogical text provides a solid understanding of the key aspects of modern machine learning with artificial neural networks, for students in physics, mathematics, and engineering. Numerous exercises expand and reinforce key concepts within the book and allow students to hone their programming skills. Frequent references to current research develop a detailed perspective on the state-of-the-art in machine learning research.
Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications
Author: Zhang, Ming
Publisher: IGI Global
ISBN: 1615207120
Category : Computers
Languages : en
Pages : 660
Book Description
"This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.
Publisher: IGI Global
ISBN: 1615207120
Category : Computers
Languages : en
Pages : 660
Book Description
"This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.
Artificial Neural Networks in Finance and Manufacturing
Author: Kamruzzaman, Joarder
Publisher: IGI Global
ISBN: 1591406722
Category : Computers
Languages : en
Pages : 299
Book Description
"This book presents a variety of practical applications of neural networks in two important domains of economic activity: finance and manufacturing"--Provided by publisher.
Publisher: IGI Global
ISBN: 1591406722
Category : Computers
Languages : en
Pages : 299
Book Description
"This book presents a variety of practical applications of neural networks in two important domains of economic activity: finance and manufacturing"--Provided by publisher.
Artificial Intelligence in the Age of Neural Networks and Brain Computing
Author: Robert Kozma
Publisher: Academic Press
ISBN: 0323958168
Category : Computers
Languages : en
Pages : 398
Book Description
Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks
Publisher: Academic Press
ISBN: 0323958168
Category : Computers
Languages : en
Pages : 398
Book Description
Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks
Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning
Author: Richard Segall
Publisher: Engineering Science Reference
ISBN: 9781799884552
Category : Medicine
Languages : en
Pages :
Book Description
"This book covers applications of artificial neural networks (ANN) and machine learning (ML) aspects of artificial intelligence to applications to the biomedical and business world including their interface to applications for screening for diseases to applications to large-scale credit card purchasing patterns"--
Publisher: Engineering Science Reference
ISBN: 9781799884552
Category : Medicine
Languages : en
Pages :
Book Description
"This book covers applications of artificial neural networks (ANN) and machine learning (ML) aspects of artificial intelligence to applications to the biomedical and business world including their interface to applications for screening for diseases to applications to large-scale credit card purchasing patterns"--
Artificial Neural Networks
Author: Dan W. Patterson
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 500
Book Description
This comprehensive tutorial on artifical neural networks covers all the important neural network architectures as well as the most recent theory--e.g., pattern recognition, statistical theory, and other mathematical prerequisites. A broad range of applications is provided for each of the architectures.
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 500
Book Description
This comprehensive tutorial on artifical neural networks covers all the important neural network architectures as well as the most recent theory--e.g., pattern recognition, statistical theory, and other mathematical prerequisites. A broad range of applications is provided for each of the architectures.
Neural Networks
Author: Doug Alexander
Publisher:
ISBN: 9781536172331
Category : Computers
Languages : en
Pages : 232
Book Description
"With respect to the ever-increasing developments in artificial intelligence and artificial neural network applications in different scopes such as medicine, industry, biology, history, military industries, recognition science, space, machine learning and etc., Neural Networks: History and Applications first discusses a comprehensive investigation of artificial neural networks. Next, the authors focus on studies carried out with the artificial neural network approach on the emotion recognition from 2D facial expressions between 2009 and 2019. The major objective of this study is to review, identify, evaluate and analyze the performance of artificial neural network models in emotion recognition applications. This compilation also proposes a simple nonlinear approach for dipole mode index prediction where past values of dipole mode index were used as inputs, and future values were predicted by artificial neural networks. The study was also conducted for seasonal dipole mode index prediction because the dipole mode index is more prominent in the Sep-Oct-Nov season. A subsequent study focuses on how mammography has a high false negative and false positive rate. As such, computer-aided diagnosis systems have been commercialized to help in micro-calcification detection and malignancy differentiation. Yet, little has been explored in differentiating breast cancers with artificial neural networks, one example of computer-aided diagnosis systems. The authors aim to bridge this gap in research. The penultimate chapter reviews the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. Then, the accuracy of each plasticity rule with respect to its temporal encoding precision is examined, and the maximum number of input patterns it can memorize using the precise timings of individual spikes as an indicator of storage capacity in different control and recognition tasks is explored. In closing, a case study is presented centered on an intelligent decision support system that is built on a neural network model based on the Encog machine learning framework to predict cryptocurrency close prices"--
Publisher:
ISBN: 9781536172331
Category : Computers
Languages : en
Pages : 232
Book Description
"With respect to the ever-increasing developments in artificial intelligence and artificial neural network applications in different scopes such as medicine, industry, biology, history, military industries, recognition science, space, machine learning and etc., Neural Networks: History and Applications first discusses a comprehensive investigation of artificial neural networks. Next, the authors focus on studies carried out with the artificial neural network approach on the emotion recognition from 2D facial expressions between 2009 and 2019. The major objective of this study is to review, identify, evaluate and analyze the performance of artificial neural network models in emotion recognition applications. This compilation also proposes a simple nonlinear approach for dipole mode index prediction where past values of dipole mode index were used as inputs, and future values were predicted by artificial neural networks. The study was also conducted for seasonal dipole mode index prediction because the dipole mode index is more prominent in the Sep-Oct-Nov season. A subsequent study focuses on how mammography has a high false negative and false positive rate. As such, computer-aided diagnosis systems have been commercialized to help in micro-calcification detection and malignancy differentiation. Yet, little has been explored in differentiating breast cancers with artificial neural networks, one example of computer-aided diagnosis systems. The authors aim to bridge this gap in research. The penultimate chapter reviews the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. Then, the accuracy of each plasticity rule with respect to its temporal encoding precision is examined, and the maximum number of input patterns it can memorize using the precise timings of individual spikes as an indicator of storage capacity in different control and recognition tasks is explored. In closing, a case study is presented centered on an intelligent decision support system that is built on a neural network model based on the Encog machine learning framework to predict cryptocurrency close prices"--
Artificial Neural Networks
Author: Chi Leung Patrick Hui
Publisher: BoD – Books on Demand
ISBN: 9533071885
Category : Computers
Languages : en
Pages : 602
Book Description
This book covers 27 articles in the applications of artificial neural networks (ANN) in various disciplines which includes business, chemical technology, computing, engineering, environmental science, science and nanotechnology. They modeled the ANN with verification in different areas. They demonstrated that the ANN is very useful model and the ANN could be applied in problem solving and machine learning. This book is suitable for all professionals and scientists in understanding how ANN is applied in various areas.
Publisher: BoD – Books on Demand
ISBN: 9533071885
Category : Computers
Languages : en
Pages : 602
Book Description
This book covers 27 articles in the applications of artificial neural networks (ANN) in various disciplines which includes business, chemical technology, computing, engineering, environmental science, science and nanotechnology. They modeled the ANN with verification in different areas. They demonstrated that the ANN is very useful model and the ANN could be applied in problem solving and machine learning. This book is suitable for all professionals and scientists in understanding how ANN is applied in various areas.