Author: Claude Carlos White
Publisher:
ISBN:
Category : Diffusion in hydrology
Languages : en
Pages : 76
Book Description
Flow Visualization Using Laser-induced Fluorescence
Author: Claude Carlos White
Publisher:
ISBN:
Category : Diffusion in hydrology
Languages : en
Pages : 76
Book Description
Publisher:
ISBN:
Category : Diffusion in hydrology
Languages : en
Pages : 76
Book Description
Flow Visualization
Author: Wolgang Merzkirch
Publisher: Elsevier
ISBN: 0080506585
Category : Technology & Engineering
Languages : en
Pages : 271
Book Description
Flow Visualization, Second Edition focuses on developments, applications, and results in the field of flow visualization. Organized into four chapters, this book begins with the principles of flow visualization and image processing. Subsequent chapters describe the methods of flow visualization, particularly the addition of foreign material to the flowing fluid that might be gaseous or liquid; certain optical methods that are sensitive to changes of the index of refraction; and flow field marking by heat and energy addition.
Publisher: Elsevier
ISBN: 0080506585
Category : Technology & Engineering
Languages : en
Pages : 271
Book Description
Flow Visualization, Second Edition focuses on developments, applications, and results in the field of flow visualization. Organized into four chapters, this book begins with the principles of flow visualization and image processing. Subsequent chapters describe the methods of flow visualization, particularly the addition of foreign material to the flowing fluid that might be gaseous or liquid; certain optical methods that are sensitive to changes of the index of refraction; and flow field marking by heat and energy addition.
Strategies for Planar Laser-induced Fluorescence Thermometry in Shock Tube Flows
Author: Ji Hyung Yoo
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 151
Book Description
This thesis was motivated by the need to better understand the temperature distribution in shock tube flows, especially in the near-wall flow regions. Two main ideas in planar laser-induced fluorescence (PLIF) diagnostics are explored in this thesis. The first topic is the development of a single-shot PLIF diagnostic technique for quantitative temperature distribution measurement in shock tube flow fields. PLIF is a non-intrusive, laser-based diagnostic technique capable of instantaneously imaging key flow features, such as temperature, pressure, density, and species concentration, by measuring fluorescence signal intensity from laser-excited tracer species. This study performed a comprehensive comparison of florescence tracers and excitation wavelengths to determine the optimal combination for PLIF imaging in shock tube flow applications. Excitation of toluene at 248nm wavelength was determined to be the optimal strategy due to the resulting high temperature sensitivity and fluorescence signal level, compared to other ketone and aromatic tracers at other excitation wavelengths. Sub-atmospheric toluene fluorescence yield data was measured to augment the existing photophysical data necessary for this diagnostic technique. In addition, a new imaging test section was built to allow PLIF imaging in all regions of the shock tube test section, including immediately adjacent to the side and end walls. The signal-to-noise (SNR) and spatial resolution of the PLIF images were optimized using statistical analysis. Temperature field measurements were made with the PLIF diagnostic technique across normal incident and reflected shocks in the shock tube core flow. The resulting images show uniform spatial distribution, and good agreement with conditions calculated from the normal shock jump equations. Temperature measurement uncertainty is about 3.6% at 800K. The diagnostic was also applied to image flow over a wedge. The resulting images capture all the flow features predicted by numerical simulations. The second topic is the development of a quantitative near-wall diagnostic using tracer-based PLIF imaging. Side wall thermal boundary layers and end wall thermal layers are imaged to study the temperature distribution present under constant pressure conditions. The diagnostic technique validated in the shock tube core flow region was further optimized to improve near-wall image quality. The optimization process considered various wall materials, laser sheet orientations, camera collection angles, and optical components to find the configuration that provides the best images. The resulting images have increased resolution (15[Mu]m) and are able to resolve very thin non-uniform near-wall temperature layers (down to 60[Mu]m from the surface). The temperature field and thickness measurements of near-wall shock tube flows under various shock conditions and test gases showed good agreement with boundary layer theory. To conclude this thesis, new applications and future improvements to the developed PLIF diagnostic technique are discussed. These suggested refinements can provide an even more robust and versatile PLIF imaging technique capable of measuring a wider range of flow conditions near walls.
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 151
Book Description
This thesis was motivated by the need to better understand the temperature distribution in shock tube flows, especially in the near-wall flow regions. Two main ideas in planar laser-induced fluorescence (PLIF) diagnostics are explored in this thesis. The first topic is the development of a single-shot PLIF diagnostic technique for quantitative temperature distribution measurement in shock tube flow fields. PLIF is a non-intrusive, laser-based diagnostic technique capable of instantaneously imaging key flow features, such as temperature, pressure, density, and species concentration, by measuring fluorescence signal intensity from laser-excited tracer species. This study performed a comprehensive comparison of florescence tracers and excitation wavelengths to determine the optimal combination for PLIF imaging in shock tube flow applications. Excitation of toluene at 248nm wavelength was determined to be the optimal strategy due to the resulting high temperature sensitivity and fluorescence signal level, compared to other ketone and aromatic tracers at other excitation wavelengths. Sub-atmospheric toluene fluorescence yield data was measured to augment the existing photophysical data necessary for this diagnostic technique. In addition, a new imaging test section was built to allow PLIF imaging in all regions of the shock tube test section, including immediately adjacent to the side and end walls. The signal-to-noise (SNR) and spatial resolution of the PLIF images were optimized using statistical analysis. Temperature field measurements were made with the PLIF diagnostic technique across normal incident and reflected shocks in the shock tube core flow. The resulting images show uniform spatial distribution, and good agreement with conditions calculated from the normal shock jump equations. Temperature measurement uncertainty is about 3.6% at 800K. The diagnostic was also applied to image flow over a wedge. The resulting images capture all the flow features predicted by numerical simulations. The second topic is the development of a quantitative near-wall diagnostic using tracer-based PLIF imaging. Side wall thermal boundary layers and end wall thermal layers are imaged to study the temperature distribution present under constant pressure conditions. The diagnostic technique validated in the shock tube core flow region was further optimized to improve near-wall image quality. The optimization process considered various wall materials, laser sheet orientations, camera collection angles, and optical components to find the configuration that provides the best images. The resulting images have increased resolution (15[Mu]m) and are able to resolve very thin non-uniform near-wall temperature layers (down to 60[Mu]m from the surface). The temperature field and thickness measurements of near-wall shock tube flows under various shock conditions and test gases showed good agreement with boundary layer theory. To conclude this thesis, new applications and future improvements to the developed PLIF diagnostic technique are discussed. These suggested refinements can provide an even more robust and versatile PLIF imaging technique capable of measuring a wider range of flow conditions near walls.
Handbook Of Flow Visualization
Author: Wen Jei Yang
Publisher: Routledge
ISBN: 1351442619
Category : Technology & Engineering
Languages : en
Pages : 723
Book Description
With contributions from some of the world's leading experts, the second edition of this classic reference compiles all major techniques of flow visualization and demonstrates their applications in all fields of science and technology. A new chapter has been added that covers flow visualization applications in large wide tunnels for airplane and automobile testing. Several important examples of applications are included. A second new chapter details the use of infrared (IR) cameras for detecting and observing the boundary layer transition in industrial wind tunnels and flight testing of commercial transport airplanes. A final new chapter has been added on multiphase flow and pulsed-light velocimetry.
Publisher: Routledge
ISBN: 1351442619
Category : Technology & Engineering
Languages : en
Pages : 723
Book Description
With contributions from some of the world's leading experts, the second edition of this classic reference compiles all major techniques of flow visualization and demonstrates their applications in all fields of science and technology. A new chapter has been added that covers flow visualization applications in large wide tunnels for airplane and automobile testing. Several important examples of applications are included. A second new chapter details the use of infrared (IR) cameras for detecting and observing the boundary layer transition in industrial wind tunnels and flight testing of commercial transport airplanes. A final new chapter has been added on multiphase flow and pulsed-light velocimetry.
Flow Visualization
Author: Alexander J. Smits
Publisher: World Scientific
ISBN: 184816792X
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
This is the 2nd edition of the book, Flow Visualization: Techniques and Examples, which was published by Imperial College Press in 2000. Many of the chapters have been revised and updated to take into consideration recent changes in a number of flow visualization and measurement techniques, including an updated high quality flow gallery. Unique among similar publications, this book focuses on the practical rather than theoretical aspects. Obtaining high quality flow visualization results is, in many ways, more of an art than a science, and experience plays a key deciding role. The depth and breadth of the material will make this book invaluable to readers of all levels of experience in the field.
Publisher: World Scientific
ISBN: 184816792X
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
This is the 2nd edition of the book, Flow Visualization: Techniques and Examples, which was published by Imperial College Press in 2000. Many of the chapters have been revised and updated to take into consideration recent changes in a number of flow visualization and measurement techniques, including an updated high quality flow gallery. Unique among similar publications, this book focuses on the practical rather than theoretical aspects. Obtaining high quality flow visualization results is, in many ways, more of an art than a science, and experience plays a key deciding role. The depth and breadth of the material will make this book invaluable to readers of all levels of experience in the field.
Flow Visualization VI
Author: Yoshimichi Tanida
Publisher: Springer Science & Business Media
ISBN: 3642848249
Category : Technology & Engineering
Languages : en
Pages : 904
Book Description
Over the last decade, flow visualization has advanced in step with the progress in laser and computer technologies. The scope of the International Symposium on Flow Visualiza- tion will be broader than ever, covering the range of infor- mation generally thought of as nonvisual and reflecting the inclusion of computer - aided methodologies. The Sixth In- ternational Symposium on Flow Visualization aims to attract the participation of experts and users of flow viualizing techniques on furthering an advanced philosophy for the de- velopment of the methods and their applications.
Publisher: Springer Science & Business Media
ISBN: 3642848249
Category : Technology & Engineering
Languages : en
Pages : 904
Book Description
Over the last decade, flow visualization has advanced in step with the progress in laser and computer technologies. The scope of the International Symposium on Flow Visualiza- tion will be broader than ever, covering the range of infor- mation generally thought of as nonvisual and reflecting the inclusion of computer - aided methodologies. The Sixth In- ternational Symposium on Flow Visualization aims to attract the participation of experts and users of flow viualizing techniques on furthering an advanced philosophy for the de- velopment of the methods and their applications.
Handbook of Fluid Dynamics
Author: Richard W. Johnson
Publisher: CRC Press
ISBN: 1439849579
Category : Science
Languages : en
Pages : 1544
Book Description
Handbook of Fluid Dynamics offers balanced coverage of the three traditional areas of fluid dynamics—theoretical, computational, and experimental—complete with valuable appendices presenting the mathematics of fluid dynamics, tables of dimensionless numbers, and tables of the properties of gases and vapors. Each chapter introduces a different fluid dynamics topic, discusses the pertinent issues, outlines proven techniques for addressing those issues, and supplies useful references for further research. Covering all major aspects of classical and modern fluid dynamics, this fully updated Second Edition: Reflects the latest fluid dynamics research and engineering applications Includes new sections on emerging fields, most notably micro- and nanofluidics Surveys the range of numerical and computational methods used in fluid dynamics analysis and design Expands the scope of a number of contemporary topics by incorporating new experimental methods, more numerical approaches, and additional areas for the application of fluid dynamics Handbook of Fluid Dynamics, Second Edition provides an indispensable resource for professionals entering the field of fluid dynamics. The book also enables experts specialized in areas outside fluid dynamics to become familiar with the field.
Publisher: CRC Press
ISBN: 1439849579
Category : Science
Languages : en
Pages : 1544
Book Description
Handbook of Fluid Dynamics offers balanced coverage of the three traditional areas of fluid dynamics—theoretical, computational, and experimental—complete with valuable appendices presenting the mathematics of fluid dynamics, tables of dimensionless numbers, and tables of the properties of gases and vapors. Each chapter introduces a different fluid dynamics topic, discusses the pertinent issues, outlines proven techniques for addressing those issues, and supplies useful references for further research. Covering all major aspects of classical and modern fluid dynamics, this fully updated Second Edition: Reflects the latest fluid dynamics research and engineering applications Includes new sections on emerging fields, most notably micro- and nanofluidics Surveys the range of numerical and computational methods used in fluid dynamics analysis and design Expands the scope of a number of contemporary topics by incorporating new experimental methods, more numerical approaches, and additional areas for the application of fluid dynamics Handbook of Fluid Dynamics, Second Edition provides an indispensable resource for professionals entering the field of fluid dynamics. The book also enables experts specialized in areas outside fluid dynamics to become familiar with the field.
Applied Mechanics Reviews
Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 348
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 348
Book Description
Advances in Fluid Mechanics Measurements
Author: MOHAMED GAD-EL-HAK
Publisher: Springer Science & Business Media
ISBN: 3642837875
Category : Science
Languages : en
Pages : 611
Book Description
One cannot overemphasize the importance of studying fluids in motion or at rest for a variety of scientific and engineering endeavors. Fluid mechanics as an art reaches back into antiquity, but its rational formulation is a relatively recent undertaking. Much of the physics of a particular flow situation can be understood by conducting appropriate experiments. Flow visualization techniques offer a useful tool to establish an overall picture of a flow field and to delineate broadly its salient features before embarking on more detailed quantitative measurements. Among the single-point measurements that are particularly difficult are those in separated flows, non-Newtonian fluids, rotating flows, and nuclear aerosols. Pressure, shear stress, vorticity, and heat transfer coefficient are also difficult quantities to measure, particularly for time-dependent flows. These and other special situations are among the topics covered in this volume. Each article emphasizes the development of a particular measuring technique. The topics covered were chosen because of their importance to the field, recent appeal, and potential for future development. The articles are comprehensive and coverage is pedagogical with a bias towards recent developments.
Publisher: Springer Science & Business Media
ISBN: 3642837875
Category : Science
Languages : en
Pages : 611
Book Description
One cannot overemphasize the importance of studying fluids in motion or at rest for a variety of scientific and engineering endeavors. Fluid mechanics as an art reaches back into antiquity, but its rational formulation is a relatively recent undertaking. Much of the physics of a particular flow situation can be understood by conducting appropriate experiments. Flow visualization techniques offer a useful tool to establish an overall picture of a flow field and to delineate broadly its salient features before embarking on more detailed quantitative measurements. Among the single-point measurements that are particularly difficult are those in separated flows, non-Newtonian fluids, rotating flows, and nuclear aerosols. Pressure, shear stress, vorticity, and heat transfer coefficient are also difficult quantities to measure, particularly for time-dependent flows. These and other special situations are among the topics covered in this volume. Each article emphasizes the development of a particular measuring technique. The topics covered were chosen because of their importance to the field, recent appeal, and potential for future development. The articles are comprehensive and coverage is pedagogical with a bias towards recent developments.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702
Book Description