Flame Tube Nox Emissions Using a Lean-direct-wall-injection Combuster Concept ... Nasa

Flame Tube Nox Emissions Using a Lean-direct-wall-injection Combuster Concept ... Nasa PDF Author: United States. National Aeronautics and Space Administration
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Flame Tube Nox Emissions Using a Lean-direct-wall-injection Combuster Concept ... Nasa

Flame Tube Nox Emissions Using a Lean-direct-wall-injection Combuster Concept ... Nasa PDF Author: United States. National Aeronautics and Space Administration
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Flame Tube Nox Emissions Using a Lean-Direct-Wall-Injection Combustor Concept

Flame Tube Nox Emissions Using a Lean-Direct-Wall-Injection Combustor Concept PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781720524502
Category :
Languages : en
Pages : 30

Get Book Here

Book Description
A low-NOx emissions combustor concept has been demonstrated in flame tube tests. A lean-direct injection concept was used where the fuel is injected directly into the flame zone and the overall fuel-air mixture is lean. In this concept the air is swirled upstream of a venturi section and the fuel is injected radially inward into the air stream from the throat section using a plain-orifice injector. Configurations have two-, four-, or six-wall fuel injectors and in some cases fuel is also injected from an axially located simplex pressure atomizer. Various orifice sizes of the plain-orifice injector were evaluated for the effect on NOx. Test conditions were inlet temperatures up to 8 1 OK, inlet pressures up to 2760 kPa, and flame temperatures up to 2100 K. A correlation is developed relating the NOx emissions to inlet temperature, inlet pressure, fuel-air ratio and pressure drop. Assuming that 15 percent of the combustion air would be used for liner cooling and using an advanced engine cycle, for the best configuration, the NOx emissions using the correlation is estimated to be

Flame Tube NOx Emissions Using a Lean-direct-wall-injection Combustor Concept

Flame Tube NOx Emissions Using a Lean-direct-wall-injection Combustor Concept PDF Author: R. R. Tacina
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


A Unique, Optically Accessible Flame Tube Facility for Lean Combustor Studies

A Unique, Optically Accessible Flame Tube Facility for Lean Combustor Studies PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 16

Get Book Here

Book Description


Experimental Investigation of Stability and Low-NOx Potential of a Lean-Direct-Injection Combustor Concept

Experimental Investigation of Stability and Low-NOx Potential of a Lean-Direct-Injection Combustor Concept PDF Author: Jacob Haseman
Publisher:
ISBN:
Category :
Languages : en
Pages : 109

Get Book Here

Book Description
Current trends with swirler/combustor designs tend towards lower emissions in accordance with ICAO standards, with the main problems inherent in common lean-direct-injection (LDI) designs being poor stability and autoignition or flashback issues. The LDI design is meant to combine the good stability and performance of a traditional rich-burn quick-quench lean-burn (RQL) combustor with the ultra-low NOx emissions of a lean-premixed-prevaporized (LPP) combustor. The goal of this research is to investigate the feasibility of using swirlers with varying swirl strengths in an LDI combustor array by performing a series of combustion tests at atmospheric pressure. Three configurations were designed and tested which contained different arrangements of two counter-rotating radial-radial swirler designs with varying swirl strengths in a 3x3 array format. All nine swirlers contained a fuel nozzle with very similar flow numbers and were all set to the same insertion depth with respect to the swirlers' flare exits. Two nozzle insertion depths were investigated to see how the performance changes with changing insertion depth. Three fuel circuits supplied fuel to the nine fuel nozzles to the center, sides, and diagonal swirlers respectively. Testing was conducted by placing the hardware on a horizontally-oriented test rig connected to an air intake manifold, with the inlet air preheated to approximately 400°F and the pressure drop across the swirler set to 4% of atmospheric pressure. These tests investigated fuel staging configurations at various simulated engine throttle settings and flight conditions to gauge the steady-state combustion and LBO characteristics and low- NOx potential of this design. The results of this testing show that all three configurations tested were able to achieve stable-burning with low equivalence ratios for the three simulated flight conditions tested, as well as across a number of other investigated parameters. The two high-strength swirler configurations performed better than the baseline configuration in terms of LBO, stability, and flame uniformity, but all three configurations achieved stable combustion at comparable equivalence ratios to traditional combustor designs currently in use in industry. The low fuel flow rates required for ignition with the larger flow number fuel nozzles also demonstrates the practicality of this design in a real-world scenario. These tests also demonstrate that the deeper nozzle insertion depth performed better than the shallow insertion depth, and that future testing should focus on the high-strength swirler configurations.

Clean Energy and Fuel (Hydrogen) Storage

Clean Energy and Fuel (Hydrogen) Storage PDF Author: Sesha S. Srinivasan
Publisher: MDPI
ISBN: 3039216309
Category : Science
Languages : en
Pages : 278

Get Book Here

Book Description
Clean energy and fuel storage are often required for both stationary and automotive applications. Some of these clean energy and fuel storage technologies currently under extensive research and development include hydrogen storage, direct electric storage, mechanical energy storage, solar–thermal energy storage, electrochemical (batteries and supercapacitors), and thermochemical storage. The gravimetric and volumetric storage capacity, energy storage density, power output, operating temperature and pressure, cycle life, recyclability, and cost of clean energy or fuel storage are some of the factors that govern efficient energy and fuel storage technologies for potential deployment in energy harvesting (solar and wind farms) stations and onboard vehicular transportation. This Special Issue thus serves the need for promoting exploratory research and development on clean energy and fuel storage technologies while addressing their challenges to practical and sustainable infrastructures.

Structure, Stability and Emissions of Lean Direct Injection Combustion, Including a Novel Multi-point Ldi System for Nox Reduction

Structure, Stability and Emissions of Lean Direct Injection Combustion, Including a Novel Multi-point Ldi System for Nox Reduction PDF Author: Rodrigo Villalva Gómez
Publisher:
ISBN:
Category :
Languages : en
Pages : 288

Get Book Here

Book Description
Experimental research on lean direct injection (LDI) combustors for gas turbine applications is presented. LDI combustion is an alternative to lean premixed combustion which has the potential of equivalent reduction of oxides of nitrogen (NOx) emissions and of peak combustor exit temperatures, but without some drawbacks of premixed combustors, such as flashback and autoignition. Simultaneous observations of the velocity field and reaction zone of an LDI swirl-stabilized combustor with a mixing tube at atmospheric conditions, with the goal of studying the flame stabilization mechanism, are shown. The flame was consistently anchored at the shear layer formed by the high-speed reactants exiting the mixing tube and the low speed recirculation region. Individual image analysis of the location of the tip of the recirculation zone and tip of the reaction region confirmed previously observed trends, but showed that calculation of the distance between these two points for corresponding image pairs yields results no different than when calculated from random image pairs. This most likely indicates a lag in the anchoring of the flame to changes in the recirculation zone, coupled with significant stochastic variation. An alternate LDI approach, multi-point LDI (MLDI), is also tested experimentally. A single large fuel nozzle is replaced by multiple small fuel nozzles to improve atomization and reduce the total volume of the high-temperature, low velocity recirculation zones, reducing NOx formation. The combustor researched employs a novel staged approach to allow good performance across a wide range of conditions by using a combination of nozzle types optimized to various power settings. The combustor has three independent fuel circuits referenced as pilot, intermediate, and outer. Emissions measurements, OH* chemiluminescence imaging, and thermoacoustic instability studies were run in a pressurized combustion facility at pressures from 2.0 to 5.3 bar.Combustor performance was analyzed for three fuel staging configurations, using local equivalence ratio of the individual circuits as a predictive parameter. Pilot-only mode enabled combustor operation at very low overall equivalence ratios while limiting NOx formation in idle power settings due to its configuration approximating a rich-quench-lean combustor. Pilot and intermediate staging tests demonstrated the range of equivalence ratios that are effective in reducing NOx formation while keeping other pollutants in check; very low equivalence ratio results in high unburned hydrocarbon and carbon monoxide, while very high equivalence ratios result in a detrimental effect as more fuel is routed through the intermediate fuel circuit. Using all three fuel circuits simultaneously in high power operation resulted in very low NOx levels (emissions index at or below 0.5 g/kg), particularly when fuel distribution was such that local equivalence ratio was equal among all circuits. The observed NOx levels compared favorably with other MLDI designs which do not have the operational flexibility of the combustor tested. Thermoacoustic instabilities occurred in the MLDI combustor for some test conditions. The local equivalence ratio of the intermediate fuel circuit was found to be one of the major predictor of the onset of instabilities. Detailed analysis of a two-circuit instability (pilot and intermediate) is presented.

Research & Technology 2002

Research & Technology 2002 PDF Author:
Publisher: DIANE Publishing
ISBN: 1428918205
Category :
Languages : en
Pages : 274

Get Book Here

Book Description


Monthly Catalog of United States Government Publications

Monthly Catalog of United States Government Publications PDF Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 738

Get Book Here

Book Description


A Low NO(x) Lean-Direct Injection, Multipoint Integrated Module Combuster Concept for Advanced Aircraft Gas Turbines

A Low NO(x) Lean-Direct Injection, Multipoint Integrated Module Combuster Concept for Advanced Aircraft Gas Turbines PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 28

Get Book Here

Book Description