Author: Reiner M. Dreizler
Publisher: Springer
ISBN: 9783642265860
Category : Science
Languages : en
Pages : 402
Book Description
This book is the first of a series covering the major topics that are taught in university courses in Theoretical Physics: Mechanics, Electrodynamics, Quantum Theory and Statistical Physics. After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of the last sections is advanced. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. It contains: A collection of 74 problems with detailed step-by-step guidance towards the solutions, a collection of comments and additional mathematical details in support of the main text, a complete presentation of all the mathematical tools needed.
Theoretical Mechanics
Author: Reiner M. Dreizler
Publisher: Springer
ISBN: 9783642265860
Category : Science
Languages : en
Pages : 402
Book Description
This book is the first of a series covering the major topics that are taught in university courses in Theoretical Physics: Mechanics, Electrodynamics, Quantum Theory and Statistical Physics. After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of the last sections is advanced. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. It contains: A collection of 74 problems with detailed step-by-step guidance towards the solutions, a collection of comments and additional mathematical details in support of the main text, a complete presentation of all the mathematical tools needed.
Publisher: Springer
ISBN: 9783642265860
Category : Science
Languages : en
Pages : 402
Book Description
This book is the first of a series covering the major topics that are taught in university courses in Theoretical Physics: Mechanics, Electrodynamics, Quantum Theory and Statistical Physics. After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of the last sections is advanced. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. It contains: A collection of 74 problems with detailed step-by-step guidance towards the solutions, a collection of comments and additional mathematical details in support of the main text, a complete presentation of all the mathematical tools needed.
The Theoretical Minimum
Author: Leonard Susskind
Publisher: Basic Books
ISBN: 0465038921
Category : Education
Languages : en
Pages : 165
Book Description
A master teacher presents the ultimate introduction to classical mechanics for people who are serious about learning physics "Beautifully clear explanations of famously 'difficult' things," -- Wall Street Journal If you ever regretted not taking physics in college -- or simply want to know how to think like a physicist -- this is the book for you. In this bestselling introduction to classical mechanics, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Challenging, lucid, and concise, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.
Publisher: Basic Books
ISBN: 0465038921
Category : Education
Languages : en
Pages : 165
Book Description
A master teacher presents the ultimate introduction to classical mechanics for people who are serious about learning physics "Beautifully clear explanations of famously 'difficult' things," -- Wall Street Journal If you ever regretted not taking physics in college -- or simply want to know how to think like a physicist -- this is the book for you. In this bestselling introduction to classical mechanics, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Challenging, lucid, and concise, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.
Mechanics
Author: L D Landau
Publisher: Elsevier
ISBN: 0080503470
Category : Science
Languages : en
Pages : 199
Book Description
Devoted to the foundation of mechanics, namely classical Newtonian mechanics, the subject is based mainly on Galileo's principle of relativity and Hamilton's principle of least action. The exposition is simple and leads to the most complete direct means of solving problems in mechanics.The final sections on adiabatic invariants have been revised and augmented. In addition a short biography of L D Landau has been inserted.
Publisher: Elsevier
ISBN: 0080503470
Category : Science
Languages : en
Pages : 199
Book Description
Devoted to the foundation of mechanics, namely classical Newtonian mechanics, the subject is based mainly on Galileo's principle of relativity and Hamilton's principle of least action. The exposition is simple and leads to the most complete direct means of solving problems in mechanics.The final sections on adiabatic invariants have been revised and augmented. In addition a short biography of L D Landau has been inserted.
Theoretical Mechanics of Particles and Continua
Author: Alexander L. Fetter
Publisher: Courier Corporation
ISBN: 0486432610
Category : Science
Languages : en
Pages : 596
Book Description
This two-part text fills what has often been a void in the first-year graduate physics curriculum. Through its examination of particles and continua, it supplies a lucid and self-contained account of classical mechanics — which in turn provides a natural framework for introducing many of the advanced mathematical concepts in physics. The text opens with Newton's laws of motion and systematically develops the dynamics of classical particles, with chapters on basic principles, rotating coordinate systems, lagrangian formalism, small oscillations, dynamics of rigid bodies, and hamiltonian formalism, including a brief discussion of the transition to quantum mechanics. This part of the book also considers examples of the limiting behavior of many particles, facilitating the eventual transition to a continuous medium. The second part deals with classical continua, including chapters on string membranes, sound waves, surface waves on nonviscous fluids, heat conduction, viscous fluids, and elastic media. Each of these self-contained chapters provides the relevant physical background and develops the appropriate mathematical techniques, and problems of varying difficulty appear throughout the text.
Publisher: Courier Corporation
ISBN: 0486432610
Category : Science
Languages : en
Pages : 596
Book Description
This two-part text fills what has often been a void in the first-year graduate physics curriculum. Through its examination of particles and continua, it supplies a lucid and self-contained account of classical mechanics — which in turn provides a natural framework for introducing many of the advanced mathematical concepts in physics. The text opens with Newton's laws of motion and systematically develops the dynamics of classical particles, with chapters on basic principles, rotating coordinate systems, lagrangian formalism, small oscillations, dynamics of rigid bodies, and hamiltonian formalism, including a brief discussion of the transition to quantum mechanics. This part of the book also considers examples of the limiting behavior of many particles, facilitating the eventual transition to a continuous medium. The second part deals with classical continua, including chapters on string membranes, sound waves, surface waves on nonviscous fluids, heat conduction, viscous fluids, and elastic media. Each of these self-contained chapters provides the relevant physical background and develops the appropriate mathematical techniques, and problems of varying difficulty appear throughout the text.
Introduction to Theoretical Mechanics
Author: Robert A. Becker
Publisher:
ISBN: 9780758184931
Category :
Languages : en
Pages : 420
Book Description
Publisher:
ISBN: 9780758184931
Category :
Languages : en
Pages : 420
Book Description
Introduction To Lagrangian Mechanics, An (2nd Edition)
Author: Alain J Brizard
Publisher: World Scientific Publishing Company
ISBN: 9814623644
Category : Science
Languages : en
Pages : 324
Book Description
An Introduction to Lagrangian Mechanics begins with a proper historical perspective on the Lagrangian method by presenting Fermat's Principle of Least Time (as an introduction to the Calculus of Variations) as well as the principles of Maupertuis, Jacobi, and d'Alembert that preceded Hamilton's formulation of the Principle of Least Action, from which the Euler-Lagrange equations of motion are derived. Other additional topics not traditionally presented in undergraduate textbooks include the treatment of constraint forces in Lagrangian Mechanics; Routh's procedure for Lagrangian systems with symmetries; the art of numerical analysis for physical systems; variational formulations for several continuous Lagrangian systems; an introduction to elliptic functions with applications in Classical Mechanics; and Noncanonical Hamiltonian Mechanics and perturbation theory.The Second Edition includes a larger selection of examples and problems (with hints) in each chapter and continues the strong emphasis of the First Edition on the development and application of mathematical methods (mostly calculus) to the solution of problems in Classical Mechanics.New material has been added to most chapters. For example, a new derivation of the Noether theorem for discrete Lagrangian systems is given and a modified Rutherford scattering problem is solved exactly to show that the total scattering cross section associated with a confined potential (i.e., which vanishes beyond a certain radius) yields the hard-sphere result. The Frenet-Serret formulas for the Coriolis-corrected projectile motion are presented, where the Frenet-Serret torsion is shown to be directly related to the Coriolis deflection, and a new treatment of the sleeping-top problem is given.
Publisher: World Scientific Publishing Company
ISBN: 9814623644
Category : Science
Languages : en
Pages : 324
Book Description
An Introduction to Lagrangian Mechanics begins with a proper historical perspective on the Lagrangian method by presenting Fermat's Principle of Least Time (as an introduction to the Calculus of Variations) as well as the principles of Maupertuis, Jacobi, and d'Alembert that preceded Hamilton's formulation of the Principle of Least Action, from which the Euler-Lagrange equations of motion are derived. Other additional topics not traditionally presented in undergraduate textbooks include the treatment of constraint forces in Lagrangian Mechanics; Routh's procedure for Lagrangian systems with symmetries; the art of numerical analysis for physical systems; variational formulations for several continuous Lagrangian systems; an introduction to elliptic functions with applications in Classical Mechanics; and Noncanonical Hamiltonian Mechanics and perturbation theory.The Second Edition includes a larger selection of examples and problems (with hints) in each chapter and continues the strong emphasis of the First Edition on the development and application of mathematical methods (mostly calculus) to the solution of problems in Classical Mechanics.New material has been added to most chapters. For example, a new derivation of the Noether theorem for discrete Lagrangian systems is given and a modified Rutherford scattering problem is solved exactly to show that the total scattering cross section associated with a confined potential (i.e., which vanishes beyond a certain radius) yields the hard-sphere result. The Frenet-Serret formulas for the Coriolis-corrected projectile motion are presented, where the Frenet-Serret torsion is shown to be directly related to the Coriolis deflection, and a new treatment of the sleeping-top problem is given.
Analytical Mechanics for Relativity and Quantum Mechanics
Author: Oliver Johns
Publisher: OUP Oxford
ISBN: 0191001627
Category : Science
Languages : en
Pages : 653
Book Description
An innovative and mathematically sound treatment of the foundations of analytical mechanics and the relation of classical mechanics to relativity and quantum theory. It presents classical mechanics in a way designed to assist the student's transition to quantum theory.
Publisher: OUP Oxford
ISBN: 0191001627
Category : Science
Languages : en
Pages : 653
Book Description
An innovative and mathematically sound treatment of the foundations of analytical mechanics and the relation of classical mechanics to relativity and quantum theory. It presents classical mechanics in a way designed to assist the student's transition to quantum theory.
Theoretical Physics 1
Author: Wolfgang Nolting
Publisher: Springer
ISBN: 3319401084
Category : Science
Languages : de
Pages : 540
Book Description
Der Grundkurs Theoretische Physik deckt in sieben Bänden alle für Diplom- und Bachelor/Master-Studiengänge maßgeblichen Gebiete ab. Jeder Band vermittelt das im jeweiligen Semester nötige theoretisch-physikalische Rüstzeug. Übungsaufgaben mit ausführlichen Lösungen dienen der Vertiefung des Stoffs. Band 1 behandelt die klassische Mechanik. Vorausgesetzt wird nur die übliche Schulmathematik, andere mathematische Hilfsmittel werden zu Beginn ausführlich erläutert. Die zweifarbig gestaltete Neuauflage wurde grundlegend überarbeitet und ergänzt.
Publisher: Springer
ISBN: 3319401084
Category : Science
Languages : de
Pages : 540
Book Description
Der Grundkurs Theoretische Physik deckt in sieben Bänden alle für Diplom- und Bachelor/Master-Studiengänge maßgeblichen Gebiete ab. Jeder Band vermittelt das im jeweiligen Semester nötige theoretisch-physikalische Rüstzeug. Übungsaufgaben mit ausführlichen Lösungen dienen der Vertiefung des Stoffs. Band 1 behandelt die klassische Mechanik. Vorausgesetzt wird nur die übliche Schulmathematik, andere mathematische Hilfsmittel werden zu Beginn ausführlich erläutert. Die zweifarbig gestaltete Neuauflage wurde grundlegend überarbeitet und ergänzt.
A Student's Guide to Lagrangians and Hamiltonians
Author: Patrick Hamill
Publisher: Cambridge University Press
ISBN: 1107042887
Category : Mathematics
Languages : en
Pages : 185
Book Description
A concise treatment of variational techniques, focussing on Lagrangian and Hamiltonian systems, ideal for physics, engineering and mathematics students.
Publisher: Cambridge University Press
ISBN: 1107042887
Category : Mathematics
Languages : en
Pages : 185
Book Description
A concise treatment of variational techniques, focussing on Lagrangian and Hamiltonian systems, ideal for physics, engineering and mathematics students.
Quantum Mechanics
Author: Leonard Susskind
Publisher: Basic Books (AZ)
ISBN: 0465036678
Category : Science
Languages : en
Pages : 386
Book Description
From the bestselling author of The Theoretical Minimum, a DIY introduction to the math and science of quantum physics First he taught you classical mechanics. Now, physicist Leonard Susskind has teamed up with data engineer Art Friedman to present the theory and associated mathematics of the strange world of quantum mechanics. In this follow-up to The Theoretical Minimum, Susskind and Friedman provide a lively introduction to this famously difficult field, which attempts to understand the behavior of sub-atomic objects through mathematical abstractions. Unlike other popularizations that shy away from quantum mechanics’ weirdness, Quantum Mechanics embraces the utter strangeness of quantum logic. The authors offer crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics, and each chapter includes exercises to ensure mastery of each area. Like The Theoretical Minimum, this volume runs parallel to Susskind’s eponymous Stanford University-hosted continuing education course. An approachable yet rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.
Publisher: Basic Books (AZ)
ISBN: 0465036678
Category : Science
Languages : en
Pages : 386
Book Description
From the bestselling author of The Theoretical Minimum, a DIY introduction to the math and science of quantum physics First he taught you classical mechanics. Now, physicist Leonard Susskind has teamed up with data engineer Art Friedman to present the theory and associated mathematics of the strange world of quantum mechanics. In this follow-up to The Theoretical Minimum, Susskind and Friedman provide a lively introduction to this famously difficult field, which attempts to understand the behavior of sub-atomic objects through mathematical abstractions. Unlike other popularizations that shy away from quantum mechanics’ weirdness, Quantum Mechanics embraces the utter strangeness of quantum logic. The authors offer crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics, and each chapter includes exercises to ensure mastery of each area. Like The Theoretical Minimum, this volume runs parallel to Susskind’s eponymous Stanford University-hosted continuing education course. An approachable yet rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.