Author: Joseph I. Kapusta
Publisher: Cambridge University Press
ISBN: 1009401955
Category : Science
Languages : en
Pages : 443
Book Description
Finite-Temperature Field Theory
Finite Temperature Field Theory (Second Edition)
Author: Ashok Das
Publisher: World Scientific
ISBN: 9811272360
Category : Science
Languages : en
Pages : 653
Book Description
This book discusses all three formalisms used in the study of finite temperature field theory, namely the imaginary time formalism, the closed time formalism and thermofield dynamics. In addition, the finite temperature description on an arbitrary path in the complex t-plane is also described in detail. Gauge field theories and symmetry restoration at finite temperature are among the practical examples discussed in depth. The thermal operator representation relating the zero temperature Feynman graphs to the finite temperature ones are also explained in depth. Applications of the formalisms are worked out in detail. The consistent generalization of light-front field theories to finite temperature is systematically explained as well as the phenomenon of Unruh radiation. Cutting (Cutcosky) rules for the imaginary parts of amplitudes at finite temperature are discussed in careful detail and examples are worked out. Spontaneous and dynamical symmetry breaking and possible symmetry restoration at finite temperature are described. The question of gauge dependence of the effective potential as well as physical parameters (like mass) and the Nielsen identities are explained with examples. The methods for calculating effective actions at finite temperature are described with examples. The subtleties which arise at finite temperature are pointed out in detail also with examples. The nonrestoration of some of the symmetries at high temperature (such as supersymmetry) and theories on nonsimply connected space-times are described thoroughly. Examples of nonequilibrium phenomena are discussed with the disoriented chiral condensates as an illustration. Fluctuation-dissipation theorem is explained in detail and is worked out systematically for glassy materials. Several appendices are added at the end of some of the chapters to help the readers appreciate the discussions of the individual chapters.This book is a very useful tool for graduate students, teachers and researchers in theoretical physics.
Publisher: World Scientific
ISBN: 9811272360
Category : Science
Languages : en
Pages : 653
Book Description
This book discusses all three formalisms used in the study of finite temperature field theory, namely the imaginary time formalism, the closed time formalism and thermofield dynamics. In addition, the finite temperature description on an arbitrary path in the complex t-plane is also described in detail. Gauge field theories and symmetry restoration at finite temperature are among the practical examples discussed in depth. The thermal operator representation relating the zero temperature Feynman graphs to the finite temperature ones are also explained in depth. Applications of the formalisms are worked out in detail. The consistent generalization of light-front field theories to finite temperature is systematically explained as well as the phenomenon of Unruh radiation. Cutting (Cutcosky) rules for the imaginary parts of amplitudes at finite temperature are discussed in careful detail and examples are worked out. Spontaneous and dynamical symmetry breaking and possible symmetry restoration at finite temperature are described. The question of gauge dependence of the effective potential as well as physical parameters (like mass) and the Nielsen identities are explained with examples. The methods for calculating effective actions at finite temperature are described with examples. The subtleties which arise at finite temperature are pointed out in detail also with examples. The nonrestoration of some of the symmetries at high temperature (such as supersymmetry) and theories on nonsimply connected space-times are described thoroughly. Examples of nonequilibrium phenomena are discussed with the disoriented chiral condensates as an illustration. Fluctuation-dissipation theorem is explained in detail and is worked out systematically for glassy materials. Several appendices are added at the end of some of the chapters to help the readers appreciate the discussions of the individual chapters.This book is a very useful tool for graduate students, teachers and researchers in theoretical physics.
Thermal Field Theory
Author: Michel Le Bellac
Publisher: Cambridge University Press
ISBN: 9780521654777
Category : Science
Languages : en
Pages : 274
Book Description
Introduction to the relativistic thermal field theory and its applications in particle physics and astrophysics.
Publisher: Cambridge University Press
ISBN: 9780521654777
Category : Science
Languages : en
Pages : 274
Book Description
Introduction to the relativistic thermal field theory and its applications in particle physics and astrophysics.
Basics of Thermal Field Theory
Author: Mikko Laine
Publisher: Springer
ISBN: 3319319337
Category : Science
Languages : en
Pages : 288
Book Description
This book presents thermal field theory techniques, which can be applied in both cosmology and the theoretical description of the QCD plasma generated in heavy-ion collision experiments. It focuses on gauge interactions (whether weak or strong), which are essential in both contexts. As well as the many differences in the physics questions posed and in the microscopic forces playing a central role, the authors also explain the similarities and the techniques, such as the resummations, that are needed for developing a formally consistent perturbative expansion. The formalism is developed step by step, starting from quantum mechanics; introducing scalar, fermionic and gauge fields; describing the issues of infrared divergences; resummations and effective field theories; and incorporating systems with finite chemical potentials. With this machinery in place, the important class of real-time (dynamic) observables is treated in some detail. This is followed by an overview of a number of applications, ranging from the study of phase transitions and particle production rate computations, to the concept of transport and damping coefficients that play a ubiquitous role in current developments. The book serves as a self-contained textbook on relativistic thermal field theory for undergraduate and graduate students of theoretical high-energy physics.
Publisher: Springer
ISBN: 3319319337
Category : Science
Languages : en
Pages : 288
Book Description
This book presents thermal field theory techniques, which can be applied in both cosmology and the theoretical description of the QCD plasma generated in heavy-ion collision experiments. It focuses on gauge interactions (whether weak or strong), which are essential in both contexts. As well as the many differences in the physics questions posed and in the microscopic forces playing a central role, the authors also explain the similarities and the techniques, such as the resummations, that are needed for developing a formally consistent perturbative expansion. The formalism is developed step by step, starting from quantum mechanics; introducing scalar, fermionic and gauge fields; describing the issues of infrared divergences; resummations and effective field theories; and incorporating systems with finite chemical potentials. With this machinery in place, the important class of real-time (dynamic) observables is treated in some detail. This is followed by an overview of a number of applications, ranging from the study of phase transitions and particle production rate computations, to the concept of transport and damping coefficients that play a ubiquitous role in current developments. The book serves as a self-contained textbook on relativistic thermal field theory for undergraduate and graduate students of theoretical high-energy physics.
Thermal Quantum Field Theory: Algebraic Aspects And Applications
Author: Faqir C Khanna
Publisher: World Scientific
ISBN: 9814470732
Category : Science
Languages : en
Pages : 482
Book Description
This monograph presents recent developments in quantum field theory at finite temperature. By using Lie groups, ideas from thermal theory are considered with concepts of symmetry, allowing for applications not only to quantum field theory but also to transport theory, quantum optics and statistical mechanics. This includes an analysis of geometrical and topological aspects of spatially confined systems with applications to the Casimir effect, superconductivity and phase transitions. Finally, some developments in open systems are also considered. The book provides a unified picture of the fundamental aspects in thermal quantum field theory and their applications, and is important to the field as a result, since it combines several diverse ideas that lead to a better understanding of different areas of physics.
Publisher: World Scientific
ISBN: 9814470732
Category : Science
Languages : en
Pages : 482
Book Description
This monograph presents recent developments in quantum field theory at finite temperature. By using Lie groups, ideas from thermal theory are considered with concepts of symmetry, allowing for applications not only to quantum field theory but also to transport theory, quantum optics and statistical mechanics. This includes an analysis of geometrical and topological aspects of spatially confined systems with applications to the Casimir effect, superconductivity and phase transitions. Finally, some developments in open systems are also considered. The book provides a unified picture of the fundamental aspects in thermal quantum field theory and their applications, and is important to the field as a result, since it combines several diverse ideas that lead to a better understanding of different areas of physics.
Statistical Approach to Quantum Field Theory
Author: Andreas Wipf
Publisher: Springer Nature
ISBN: 3030832635
Category : Science
Languages : en
Pages : 568
Book Description
This new expanded second edition has been totally revised and corrected. The reader finds two complete new chapters. One covers the exact solution of the finite temperature Schwinger model with periodic boundary conditions. This simple model supports instanton solutions – similarly as QCD – and allows for a detailed discussion of topological sectors in gauge theories, the anomaly-induced breaking of chiral symmetry and the intriguing role of fermionic zero modes. The other new chapter is devoted to interacting fermions at finite fermion density and finite temperature. Such low-dimensional models are used to describe long-energy properties of Dirac-type materials in condensed matter physics. The large-N solutions of the Gross-Neveu, Nambu-Jona-Lasinio and Thirring models are presented in great detail, where N denotes the number of fermion flavors. Towards the end of the book corrections to the large-N solution and simulation results of a finite number of fermion flavors are presented. Further problems are added at the end of each chapter in order to guide the reader to a deeper understanding of the presented topics. This book is meant for advanced students and young researchers who want to acquire the necessary tools and experience to produce research results in the statistical approach to Quantum Field Theory.
Publisher: Springer Nature
ISBN: 3030832635
Category : Science
Languages : en
Pages : 568
Book Description
This new expanded second edition has been totally revised and corrected. The reader finds two complete new chapters. One covers the exact solution of the finite temperature Schwinger model with periodic boundary conditions. This simple model supports instanton solutions – similarly as QCD – and allows for a detailed discussion of topological sectors in gauge theories, the anomaly-induced breaking of chiral symmetry and the intriguing role of fermionic zero modes. The other new chapter is devoted to interacting fermions at finite fermion density and finite temperature. Such low-dimensional models are used to describe long-energy properties of Dirac-type materials in condensed matter physics. The large-N solutions of the Gross-Neveu, Nambu-Jona-Lasinio and Thirring models are presented in great detail, where N denotes the number of fermion flavors. Towards the end of the book corrections to the large-N solution and simulation results of a finite number of fermion flavors are presented. Further problems are added at the end of each chapter in order to guide the reader to a deeper understanding of the presented topics. This book is meant for advanced students and young researchers who want to acquire the necessary tools and experience to produce research results in the statistical approach to Quantum Field Theory.
Quantum Gases
Author: Nick Proukakis
Publisher: World Scientific
ISBN: 1848168128
Category : Science
Languages : en
Pages : 579
Book Description
This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.
Publisher: World Scientific
ISBN: 1848168128
Category : Science
Languages : en
Pages : 579
Book Description
This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.
Lattice Gauge Theories: An Introduction
Author: Heinz J Rothe
Publisher: World Scientific
ISBN: 9814602302
Category :
Languages : en
Pages : 397
Book Description
This book introduces a large number of topics in lattice gauge theories, including analytical as well as numerical methods. It provides young physicists with the theoretical background and basic computational tools in order to be able to follow the extensive literature on the subject, and to carry out research on their own. Whenever possible, the basic ideas and technical inputs are demonstrated in simple examples, so as to avoid diverting the readers' attention from the main line of thought. Sufficient technical details are however given so that he can fill in the remaining details with the help of the cited literature without too much effort.This volume is designed for graduate students in theoretical elementary particle physics or statistical mechanics with a basic knowledge in Quantum Field Theory.
Publisher: World Scientific
ISBN: 9814602302
Category :
Languages : en
Pages : 397
Book Description
This book introduces a large number of topics in lattice gauge theories, including analytical as well as numerical methods. It provides young physicists with the theoretical background and basic computational tools in order to be able to follow the extensive literature on the subject, and to carry out research on their own. Whenever possible, the basic ideas and technical inputs are demonstrated in simple examples, so as to avoid diverting the readers' attention from the main line of thought. Sufficient technical details are however given so that he can fill in the remaining details with the help of the cited literature without too much effort.This volume is designed for graduate students in theoretical elementary particle physics or statistical mechanics with a basic knowledge in Quantum Field Theory.
Perturbative Algebraic Quantum Field Theory
Author: Kasia Rejzner
Publisher: Springer
ISBN: 3319259016
Category : Science
Languages : en
Pages : 186
Book Description
Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities and works on a large class of Lorenzian manifolds. We discuss in detail the examples of scalar fields, gauge theories and the effective quantum gravity. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all, of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses effective quantum gravity. The book aims to be accessible to researchers and graduate students, who are interested in the mathematical foundations of pQFT.
Publisher: Springer
ISBN: 3319259016
Category : Science
Languages : en
Pages : 186
Book Description
Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities and works on a large class of Lorenzian manifolds. We discuss in detail the examples of scalar fields, gauge theories and the effective quantum gravity. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all, of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses effective quantum gravity. The book aims to be accessible to researchers and graduate students, who are interested in the mathematical foundations of pQFT.
Finite-Temperature Field Theory
Author: Joseph I. Kapusta
Publisher: Cambridge University Press
ISBN: 1139457624
Category : Science
Languages : en
Pages : 441
Book Description
The 2006 second edition of this book develops the basic formalism and theoretical techniques for studying relativistic quantum field theory at high temperature and density. Specific physical theories treated include QED, QCD, electroweak theory, and effective nuclear field theories of hadronic and nuclear matter. Topics include: functional integral representation of the partition function, diagrammatic expansions, linear response theory, screening and plasma oscillations, spontaneous symmetry breaking, Goldstone theorem, resummation and hard thermal loops, lattice gauge theory, phase transitions, nucleation theory, quark-gluon plasma, and color superconductivity. Applications to astrophysics and cosmology cover white dwarf and neutron stars, neutrino emissivity, baryon number violation in the early universe, and cosmological phase transitions. Applications to relativistic nucleus-nucleus collisions are also included. The book is written for theorists in elementary particle physics, nuclear physics, astrophysics, and cosmology. Problems are given at the end of each chapter, and numerous references to the literature are included.
Publisher: Cambridge University Press
ISBN: 1139457624
Category : Science
Languages : en
Pages : 441
Book Description
The 2006 second edition of this book develops the basic formalism and theoretical techniques for studying relativistic quantum field theory at high temperature and density. Specific physical theories treated include QED, QCD, electroweak theory, and effective nuclear field theories of hadronic and nuclear matter. Topics include: functional integral representation of the partition function, diagrammatic expansions, linear response theory, screening and plasma oscillations, spontaneous symmetry breaking, Goldstone theorem, resummation and hard thermal loops, lattice gauge theory, phase transitions, nucleation theory, quark-gluon plasma, and color superconductivity. Applications to astrophysics and cosmology cover white dwarf and neutron stars, neutrino emissivity, baryon number violation in the early universe, and cosmological phase transitions. Applications to relativistic nucleus-nucleus collisions are also included. The book is written for theorists in elementary particle physics, nuclear physics, astrophysics, and cosmology. Problems are given at the end of each chapter, and numerous references to the literature are included.