Author: Nathalie Caspard
Publisher: Cambridge University Press
ISBN: 1107013690
Category : Mathematics
Languages : en
Pages : 351
Book Description
A comprehensive account that gives equal attention to the combinatorial, logical and applied aspects of partially ordered sets.
Finite Ordered Sets
Author: Nathalie Caspard
Publisher: Cambridge University Press
ISBN: 1107013690
Category : Mathematics
Languages : en
Pages : 351
Book Description
A comprehensive account that gives equal attention to the combinatorial, logical and applied aspects of partially ordered sets.
Publisher: Cambridge University Press
ISBN: 1107013690
Category : Mathematics
Languages : en
Pages : 351
Book Description
A comprehensive account that gives equal attention to the combinatorial, logical and applied aspects of partially ordered sets.
Abelian Groups and Representations of Finite Partially Ordered Sets
Author: David Arnold
Publisher: Springer Science & Business Media
ISBN: 1441987509
Category : Mathematics
Languages : en
Pages : 256
Book Description
The theme of this book is an exposition of connections between representations of finite partially ordered sets and abelian groups. Emphasis is placed throughout on classification, a description of the objects up to isomorphism, and computation of representation type, a measure of when classification is feasible. David M. Arnold is the Ralph and Jean Storm Professor of Mathematics at Baylor University. He is the author of "Finite Rank Torsion Free Abelian Groups and Rings" published in the Springer-Verlag Lecture Notes in Mathematics series, a co-editor for two volumes of conference proceedings, and the author of numerous articles in mathematical research journals.
Publisher: Springer Science & Business Media
ISBN: 1441987509
Category : Mathematics
Languages : en
Pages : 256
Book Description
The theme of this book is an exposition of connections between representations of finite partially ordered sets and abelian groups. Emphasis is placed throughout on classification, a description of the objects up to isomorphism, and computation of representation type, a measure of when classification is feasible. David M. Arnold is the Ralph and Jean Storm Professor of Mathematics at Baylor University. He is the author of "Finite Rank Torsion Free Abelian Groups and Rings" published in the Springer-Verlag Lecture Notes in Mathematics series, a co-editor for two volumes of conference proceedings, and the author of numerous articles in mathematical research journals.
Ordered Sets
Author: Bernd Schröder
Publisher: Springer Science & Business Media
ISBN: 1461200539
Category : Mathematics
Languages : en
Pages : 401
Book Description
An introduction to the basic tools of the theory of (partially) ordered sets such as visualization via diagrams, subsets, homomorphisms, important order-theoretical constructions and classes of ordered sets. Using a thematic approach, the author presents open or recently solved problems to motivate the development of constructions and investigations for new classes of ordered sets. The text can be used as a focused follow-up or companion to a first proof (set theory and relations) or graph theory course.
Publisher: Springer Science & Business Media
ISBN: 1461200539
Category : Mathematics
Languages : en
Pages : 401
Book Description
An introduction to the basic tools of the theory of (partially) ordered sets such as visualization via diagrams, subsets, homomorphisms, important order-theoretical constructions and classes of ordered sets. Using a thematic approach, the author presents open or recently solved problems to motivate the development of constructions and investigations for new classes of ordered sets. The text can be used as a focused follow-up or companion to a first proof (set theory and relations) or graph theory course.
Combinatorics of Finite Sets
Author: Ian Anderson
Publisher: Courier Corporation
ISBN: 9780486422572
Category : Mathematics
Languages : en
Pages : 276
Book Description
Among other subjects explored are the Clements-Lindström extension of the Kruskal-Katona theorem to multisets and the Greene-Kleitmen result concerning k-saturated chain partitions of general partially ordered sets. Includes exercises and solutions.
Publisher: Courier Corporation
ISBN: 9780486422572
Category : Mathematics
Languages : en
Pages : 276
Book Description
Among other subjects explored are the Clements-Lindström extension of the Kruskal-Katona theorem to multisets and the Greene-Kleitmen result concerning k-saturated chain partitions of general partially ordered sets. Includes exercises and solutions.
Extremal Finite Set Theory
Author: Daniel Gerbner
Publisher: CRC Press
ISBN: 0429804113
Category : Mathematics
Languages : en
Pages : 292
Book Description
Extremal Finite Set Theory surveys old and new results in the area of extremal set system theory. It presents an overview of the main techniques and tools (shifting, the cycle method, profile polytopes, incidence matrices, flag algebras, etc.) used in the different subtopics. The book focuses on the cardinality of a family of sets satisfying certain combinatorial properties. It covers recent progress in the subject of set systems and extremal combinatorics. Intended for graduate students, instructors teaching extremal combinatorics and researchers, this book serves as a sound introduction to the theory of extremal set systems. In each of the topics covered, the text introduces the basic tools used in the literature. Every chapter provides detailed proofs of the most important results and some of the most recent ones, while the proofs of some other theorems are posted as exercises with hints. Features: Presents the most basic theorems on extremal set systems Includes many proof techniques Contains recent developments The book’s contents are well suited to form the syllabus for an introductory course About the Authors: Dániel Gerbner is a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences in Budapest, Hungary. He holds a Ph.D. from Eötvös Loránd University, Hungary and has contributed to numerous publications. His research interests are in extremal combinatorics and search theory. Balázs Patkós is also a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences. He holds a Ph.D. from Central European University, Budapest and has authored several research papers. His research interests are in extremal and probabilistic combinatorics.
Publisher: CRC Press
ISBN: 0429804113
Category : Mathematics
Languages : en
Pages : 292
Book Description
Extremal Finite Set Theory surveys old and new results in the area of extremal set system theory. It presents an overview of the main techniques and tools (shifting, the cycle method, profile polytopes, incidence matrices, flag algebras, etc.) used in the different subtopics. The book focuses on the cardinality of a family of sets satisfying certain combinatorial properties. It covers recent progress in the subject of set systems and extremal combinatorics. Intended for graduate students, instructors teaching extremal combinatorics and researchers, this book serves as a sound introduction to the theory of extremal set systems. In each of the topics covered, the text introduces the basic tools used in the literature. Every chapter provides detailed proofs of the most important results and some of the most recent ones, while the proofs of some other theorems are posted as exercises with hints. Features: Presents the most basic theorems on extremal set systems Includes many proof techniques Contains recent developments The book’s contents are well suited to form the syllabus for an introductory course About the Authors: Dániel Gerbner is a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences in Budapest, Hungary. He holds a Ph.D. from Eötvös Loránd University, Hungary and has contributed to numerous publications. His research interests are in extremal combinatorics and search theory. Balázs Patkós is also a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences. He holds a Ph.D. from Central European University, Budapest and has authored several research papers. His research interests are in extremal and probabilistic combinatorics.
Ordered Sets
Author: Ivan Rival
Publisher: Springer Science & Business Media
ISBN: 9400977980
Category : Computers
Languages : en
Pages : 963
Book Description
This volume contains all twenty-three of the principal survey papers presented at the Symposium on Ordered Sets held at Banff, Canada from August 28 to September 12, 1981. The Symposium was supported by grants from the NATO Advanced Study Institute programme, the Natural Sciences and Engineering Research Council of Canada, the Canadian Mathematical Society Summer Research Institute programme, and the University of Calgary. tve are very grateful to these Organizations for their considerable interest and support. Over forty years ago on April 15, 1938 the first Symposium on Lattice Theory was held in Charlottesville, U.S.A. in conjunction with a meeting of the American Mathematical Society. The principal addresses on that occasion were Lattices and their applications by G. Birkhoff, On the application of structure theory to groups by O. Ore, and The representation of Boolean algebras by M. H. Stone. The texts of these addresses and three others by R. Baer, H. M. MacNeille, and K. Menger appear in the Bulletin of the American Mathematical Society, Volume 44, 1938. In those days the theory of ordered sets, and especially lattice theory was described as a "vigorous and promising younger brother of group theory." Some early workers hoped that lattice theoretic methods would lead to solutions of important problems in group theory.
Publisher: Springer Science & Business Media
ISBN: 9400977980
Category : Computers
Languages : en
Pages : 963
Book Description
This volume contains all twenty-three of the principal survey papers presented at the Symposium on Ordered Sets held at Banff, Canada from August 28 to September 12, 1981. The Symposium was supported by grants from the NATO Advanced Study Institute programme, the Natural Sciences and Engineering Research Council of Canada, the Canadian Mathematical Society Summer Research Institute programme, and the University of Calgary. tve are very grateful to these Organizations for their considerable interest and support. Over forty years ago on April 15, 1938 the first Symposium on Lattice Theory was held in Charlottesville, U.S.A. in conjunction with a meeting of the American Mathematical Society. The principal addresses on that occasion were Lattices and their applications by G. Birkhoff, On the application of structure theory to groups by O. Ore, and The representation of Boolean algebras by M. H. Stone. The texts of these addresses and three others by R. Baer, H. M. MacNeille, and K. Menger appear in the Bulletin of the American Mathematical Society, Volume 44, 1938. In those days the theory of ordered sets, and especially lattice theory was described as a "vigorous and promising younger brother of group theory." Some early workers hoped that lattice theoretic methods would lead to solutions of important problems in group theory.
The Axiom of Choice
Author: Thomas J. Jech
Publisher: Courier Corporation
ISBN: 0486466248
Category : Mathematics
Languages : en
Pages : 226
Book Description
Comprehensive and self-contained text examines the axiom's relative strengths and consequences, including its consistency and independence, relation to permutation models, and examples and counterexamples of its use. 1973 edition.
Publisher: Courier Corporation
ISBN: 0486466248
Category : Mathematics
Languages : en
Pages : 226
Book Description
Comprehensive and self-contained text examines the axiom's relative strengths and consequences, including its consistency and independence, relation to permutation models, and examples and counterexamples of its use. 1973 edition.
The Scottish Educational Journal
Author:
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 20
Book Description
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 20
Book Description
Theory of Sets
Author: N. Bourbaki
Publisher: Springer Science & Business Media
ISBN: 3642593097
Category : Mathematics
Languages : en
Pages : 418
Book Description
This is a softcover reprint of the English translation of 1968 of N. Bourbaki's, Thorie des Ensembles (1970).
Publisher: Springer Science & Business Media
ISBN: 3642593097
Category : Mathematics
Languages : en
Pages : 418
Book Description
This is a softcover reprint of the English translation of 1968 of N. Bourbaki's, Thorie des Ensembles (1970).
The Finite Field Distance Problem
Author: David J. Covert
Publisher: American Mathematical Soc.
ISBN: 1470460319
Category : Education
Languages : en
Pages : 181
Book Description
Erdős asked how many distinct distances must there be in a set of n n points in the plane. Falconer asked a continuous analogue, essentially asking what is the minimal Hausdorff dimension required of a compact set in order to guarantee that the set of distinct distances has positive Lebesgue measure in R R. The finite field distance problem poses the analogous question in a vector space over a finite field. The problem is relatively new but remains tantalizingly out of reach. This book provides an accessible, exciting summary of known results. The tools used range over combinatorics, number theory, analysis, and algebra. The intended audience is graduate students and advanced undergraduates interested in investigating the unknown dimensions of the problem. Results available until now only in the research literature are clearly explained and beautifully motivated. A concluding chapter opens up connections to related topics in combinatorics and number theory: incidence theory, sum-product phenomena, Waring's problem, and the Kakeya conjecture.
Publisher: American Mathematical Soc.
ISBN: 1470460319
Category : Education
Languages : en
Pages : 181
Book Description
Erdős asked how many distinct distances must there be in a set of n n points in the plane. Falconer asked a continuous analogue, essentially asking what is the minimal Hausdorff dimension required of a compact set in order to guarantee that the set of distinct distances has positive Lebesgue measure in R R. The finite field distance problem poses the analogous question in a vector space over a finite field. The problem is relatively new but remains tantalizingly out of reach. This book provides an accessible, exciting summary of known results. The tools used range over combinatorics, number theory, analysis, and algebra. The intended audience is graduate students and advanced undergraduates interested in investigating the unknown dimensions of the problem. Results available until now only in the research literature are clearly explained and beautifully motivated. A concluding chapter opens up connections to related topics in combinatorics and number theory: incidence theory, sum-product phenomena, Waring's problem, and the Kakeya conjecture.