Author: Zhe-Xian Wan
Publisher: World Scientific
ISBN: 9789812385703
Category : Mathematics
Languages : en
Pages : 360
Book Description
This is a textbook for graduate and upper level undergraduate students in mathematics, computer science, communication engineering and other fields. The explicit construction of finite fields and the computation in finite fields are emphasised. In particular, the construction of irreducible polynomials and the normal basis of finite fields are included. The essentials of Galois rings are also presented. This invaluable book has been written in a friendly style, so that lecturers can easily use it as a text and students can use it for self-study. A great number of exercises have been incorporated.
Lectures on Finite Fields and Galois Rings
Author: Zhe-Xian Wan
Publisher: World Scientific
ISBN: 9789812385703
Category : Mathematics
Languages : en
Pages : 360
Book Description
This is a textbook for graduate and upper level undergraduate students in mathematics, computer science, communication engineering and other fields. The explicit construction of finite fields and the computation in finite fields are emphasised. In particular, the construction of irreducible polynomials and the normal basis of finite fields are included. The essentials of Galois rings are also presented. This invaluable book has been written in a friendly style, so that lecturers can easily use it as a text and students can use it for self-study. A great number of exercises have been incorporated.
Publisher: World Scientific
ISBN: 9789812385703
Category : Mathematics
Languages : en
Pages : 360
Book Description
This is a textbook for graduate and upper level undergraduate students in mathematics, computer science, communication engineering and other fields. The explicit construction of finite fields and the computation in finite fields are emphasised. In particular, the construction of irreducible polynomials and the normal basis of finite fields are included. The essentials of Galois rings are also presented. This invaluable book has been written in a friendly style, so that lecturers can easily use it as a text and students can use it for self-study. A great number of exercises have been incorporated.
Galois Fields and Galois Rings Made Easy
Author: Maurice Kibler
Publisher: Elsevier
ISBN: 0081023510
Category : Mathematics
Languages : en
Pages : 272
Book Description
This book constitutes an elementary introduction to rings and fields, in particular Galois rings and Galois fields, with regard to their application to the theory of quantum information, a field at the crossroads of quantum physics, discrete mathematics and informatics.The existing literature on rings and fields is primarily mathematical. There are a great number of excellent books on the theory of rings and fields written by and for mathematicians, but these can be difficult for physicists and chemists to access.This book offers an introduction to rings and fields with numerous examples. It contains an application to the construction of mutually unbiased bases of pivotal importance in quantum information. It is intended for graduate and undergraduate students and researchers in physics, mathematical physics and quantum chemistry (especially in the domains of advanced quantum mechanics, quantum optics, quantum information theory, classical and quantum computing, and computer engineering).Although the book is not written for mathematicians, given the large number of examples discussed, it may also be of interest to undergraduate students in mathematics. - Contains numerous examples that accompany the text - Includes an important chapter on mutually unbiased bases - Helps physicists and theoretical chemists understand this area of mathematics
Publisher: Elsevier
ISBN: 0081023510
Category : Mathematics
Languages : en
Pages : 272
Book Description
This book constitutes an elementary introduction to rings and fields, in particular Galois rings and Galois fields, with regard to their application to the theory of quantum information, a field at the crossroads of quantum physics, discrete mathematics and informatics.The existing literature on rings and fields is primarily mathematical. There are a great number of excellent books on the theory of rings and fields written by and for mathematicians, but these can be difficult for physicists and chemists to access.This book offers an introduction to rings and fields with numerous examples. It contains an application to the construction of mutually unbiased bases of pivotal importance in quantum information. It is intended for graduate and undergraduate students and researchers in physics, mathematical physics and quantum chemistry (especially in the domains of advanced quantum mechanics, quantum optics, quantum information theory, classical and quantum computing, and computer engineering).Although the book is not written for mathematicians, given the large number of examples discussed, it may also be of interest to undergraduate students in mathematics. - Contains numerous examples that accompany the text - Includes an important chapter on mutually unbiased bases - Helps physicists and theoretical chemists understand this area of mathematics
Finite Fields And Galois Rings
Author: Zhe-xian Wan
Publisher: World Scientific Publishing Company
ISBN: 9813108223
Category : Mathematics
Languages : en
Pages : 387
Book Description
A large portion of the book can be used as a textbook for graduate and upper level undergraduate students in mathematics, communication engineering, computer science and other fields. The remaining part can be used as references for specialists. Explicit construction and computation of finite fields are emphasized. In particular, the construction of irreducible polynomials and normal basis of finite field is included. A detailed treatment of optimal normal basis and Galoi's rings is included. It is the first time that the galois rings are in book form.
Publisher: World Scientific Publishing Company
ISBN: 9813108223
Category : Mathematics
Languages : en
Pages : 387
Book Description
A large portion of the book can be used as a textbook for graduate and upper level undergraduate students in mathematics, communication engineering, computer science and other fields. The remaining part can be used as references for specialists. Explicit construction and computation of finite fields are emphasized. In particular, the construction of irreducible polynomials and normal basis of finite field is included. A detailed treatment of optimal normal basis and Galoi's rings is included. It is the first time that the galois rings are in book form.
Finite Commutative Rings and Their Applications
Author: Gilberto Bini
Publisher: Springer Science & Business Media
ISBN: 1461509572
Category : Technology & Engineering
Languages : en
Pages : 181
Book Description
Foreword by Dieter Jungnickel Finite Commutative Rings and their Applications answers a need for an introductory reference in finite commutative ring theory as applied to information and communication theory. This book will be of interest to both professional and academic researchers in the fields of communication and coding theory. The book is a concrete and self-contained introduction to finite commutative local rings, focusing in particular on Galois and Quasi-Galois rings. The reader is provided with an active and concrete approach to the study of the purely algebraic structure and properties of finite commutative rings (in particular, Galois rings) as well as to their applications to coding theory. Finite Commutative Rings and their Applications is the first to address both theoretical and practical aspects of finite ring theory. The authors provide a practical approach to finite rings through explanatory examples, thereby avoiding an abstract presentation of the subject. The section on Quasi-Galois rings presents new and unpublished results as well. The authors then introduce some applications of finite rings, in particular Galois rings, to coding theory, using a solid algebraic and geometric theoretical background.
Publisher: Springer Science & Business Media
ISBN: 1461509572
Category : Technology & Engineering
Languages : en
Pages : 181
Book Description
Foreword by Dieter Jungnickel Finite Commutative Rings and their Applications answers a need for an introductory reference in finite commutative ring theory as applied to information and communication theory. This book will be of interest to both professional and academic researchers in the fields of communication and coding theory. The book is a concrete and self-contained introduction to finite commutative local rings, focusing in particular on Galois and Quasi-Galois rings. The reader is provided with an active and concrete approach to the study of the purely algebraic structure and properties of finite commutative rings (in particular, Galois rings) as well as to their applications to coding theory. Finite Commutative Rings and their Applications is the first to address both theoretical and practical aspects of finite ring theory. The authors provide a practical approach to finite rings through explanatory examples, thereby avoiding an abstract presentation of the subject. The section on Quasi-Galois rings presents new and unpublished results as well. The authors then introduce some applications of finite rings, in particular Galois rings, to coding theory, using a solid algebraic and geometric theoretical background.
Lectures On Finite Fields And Galois Rings
Author: Zhe-xian Wan
Publisher: World Scientific Publishing Company
ISBN: 9813102268
Category : Mathematics
Languages : en
Pages : 354
Book Description
This is a textbook for graduate and upper level undergraduate students in mathematics, computer science, communication engineering and other fields. The explicit construction of finite fields and the computation in finite fields are emphasised. In particular, the construction of irreducible polynomials and the normal basis of finite fields are included. The essentials of Galois rings are also presented. This invaluable book has been written in a friendly style, so that lecturers can easily use it as a text and students can use it for self-study. A great number of exercises have been incorporated.
Publisher: World Scientific Publishing Company
ISBN: 9813102268
Category : Mathematics
Languages : en
Pages : 354
Book Description
This is a textbook for graduate and upper level undergraduate students in mathematics, computer science, communication engineering and other fields. The explicit construction of finite fields and the computation in finite fields are emphasised. In particular, the construction of irreducible polynomials and the normal basis of finite fields are included. The essentials of Galois rings are also presented. This invaluable book has been written in a friendly style, so that lecturers can easily use it as a text and students can use it for self-study. A great number of exercises have been incorporated.
Mathematical Essays: In Honor Of Su Buchin
Author: Chuan-chih Hsiung
Publisher: World Scientific
ISBN: 9814520950
Category : Mathematics
Languages : en
Pages : 290
Book Description
This is a collection of research papers published in various mathematical journals by friends, colleagues and former students of Professor Buchin Su in honor ofhis 80th birthday and 50th year of educational work.Professor Su was born in 1902 in Pingyang County, Zhejiang Province,People's Republic of China. He received the degree of Bachelor of Science inmathematics from Tohoku University, Sendai, Japan in 1927, and the degree ofDoctor of Science from the same university in 1931. After returning to Chinain 1931, he first taught at Zhejiang University in Hangzhou until 1952 when thewhole College of Science of Zhejiang University was merged into Fudan Universityin Shanghai. During his 50 years of educational work besides teaching, he alsohas taken up various administrative positions serving as Chairman, Dean, VicePresident and finally the President of Fudan University in 1978.
Publisher: World Scientific
ISBN: 9814520950
Category : Mathematics
Languages : en
Pages : 290
Book Description
This is a collection of research papers published in various mathematical journals by friends, colleagues and former students of Professor Buchin Su in honor ofhis 80th birthday and 50th year of educational work.Professor Su was born in 1902 in Pingyang County, Zhejiang Province,People's Republic of China. He received the degree of Bachelor of Science inmathematics from Tohoku University, Sendai, Japan in 1927, and the degree ofDoctor of Science from the same university in 1931. After returning to Chinain 1931, he first taught at Zhejiang University in Hangzhou until 1952 when thewhole College of Science of Zhejiang University was merged into Fudan Universityin Shanghai. During his 50 years of educational work besides teaching, he alsohas taken up various administrative positions serving as Chairman, Dean, VicePresident and finally the President of Fudan University in 1978.
Finite Fields
Author: Rudolf Lidl
Publisher: Cambridge University Press
ISBN: 9780521392310
Category : Mathematics
Languages : en
Pages : 784
Book Description
This book is devoted entirely to the theory of finite fields.
Publisher: Cambridge University Press
ISBN: 9780521392310
Category : Mathematics
Languages : en
Pages : 784
Book Description
This book is devoted entirely to the theory of finite fields.
Fields and Rings
Author: Irving Kaplansky
Publisher: University of Chicago Press
ISBN: 0226424510
Category : Mathematics
Languages : en
Pages : 217
Book Description
This book combines in one volume Irving Kaplansky's lecture notes on the theory of fields, ring theory, and homological dimensions of rings and modules. "In all three parts of this book the author lives up to his reputation as a first-rate mathematical stylist. Throughout the work the clarity and precision of the presentation is not only a source of constant pleasure but will enable the neophyte to master the material here presented with dispatch and ease."—A. Rosenberg, Mathematical Reviews
Publisher: University of Chicago Press
ISBN: 0226424510
Category : Mathematics
Languages : en
Pages : 217
Book Description
This book combines in one volume Irving Kaplansky's lecture notes on the theory of fields, ring theory, and homological dimensions of rings and modules. "In all three parts of this book the author lives up to his reputation as a first-rate mathematical stylist. Throughout the work the clarity and precision of the presentation is not only a source of constant pleasure but will enable the neophyte to master the material here presented with dispatch and ease."—A. Rosenberg, Mathematical Reviews
Field and Galois Theory
Author: Patrick Morandi
Publisher: Springer Science & Business Media
ISBN: 1461240409
Category : Mathematics
Languages : en
Pages : 294
Book Description
In the fall of 1990, I taught Math 581 at New Mexico State University for the first time. This course on field theory is the first semester of the year-long graduate algebra course here at NMSU. In the back of my mind, I thought it would be nice someday to write a book on field theory, one of my favorite mathematical subjects, and I wrote a crude form of lecture notes that semester. Those notes sat undisturbed for three years until late in 1993 when I finally made the decision to turn the notes into a book. The notes were greatly expanded and rewritten, and they were in a form sufficient to be used as the text for Math 581 when I taught it again in the fall of 1994. Part of my desire to write a textbook was due to the nonstandard format of our graduate algebra sequence. The first semester of our sequence is field theory. Our graduate students generally pick up group and ring theory in a senior-level course prior to taking field theory. Since we start with field theory, we would have to jump into the middle of most graduate algebra textbooks. This can make reading the text difficult by not knowing what the author did before the field theory chapters. Therefore, a book devoted to field theory is desirable for us as a text. While there are a number of field theory books around, most of these were less complete than I wanted.
Publisher: Springer Science & Business Media
ISBN: 1461240409
Category : Mathematics
Languages : en
Pages : 294
Book Description
In the fall of 1990, I taught Math 581 at New Mexico State University for the first time. This course on field theory is the first semester of the year-long graduate algebra course here at NMSU. In the back of my mind, I thought it would be nice someday to write a book on field theory, one of my favorite mathematical subjects, and I wrote a crude form of lecture notes that semester. Those notes sat undisturbed for three years until late in 1993 when I finally made the decision to turn the notes into a book. The notes were greatly expanded and rewritten, and they were in a form sufficient to be used as the text for Math 581 when I taught it again in the fall of 1994. Part of my desire to write a textbook was due to the nonstandard format of our graduate algebra sequence. The first semester of our sequence is field theory. Our graduate students generally pick up group and ring theory in a senior-level course prior to taking field theory. Since we start with field theory, we would have to jump into the middle of most graduate algebra textbooks. This can make reading the text difficult by not knowing what the author did before the field theory chapters. Therefore, a book devoted to field theory is desirable for us as a text. While there are a number of field theory books around, most of these were less complete than I wanted.
Algebra
Author: Louis Rowen
Publisher: CRC Press
ISBN: 1439863520
Category : Mathematics
Languages : en
Pages : 264
Book Description
This text presents the concepts of higher algebra in a comprehensive and modern way for self-study and as a basis for a high-level undergraduate course. The author is one of the preeminent researchers in this field and brings the reader up to the recent frontiers of research including never-before-published material. From the table of contents: - Groups: Monoids and Groups - Cauchyís Theorem - Normal Subgroups - Classifying Groups - Finite Abelian Groups - Generators and Relations - When Is a Group a Group? (Cayley's Theorem) - Sylow Subgroups - Solvable Groups - Rings and Polynomials: An Introduction to Rings - The Structure Theory of Rings - The Field of Fractions - Polynomials and Euclidean Domains - Principal Ideal Domains - Famous Results from Number Theory - I Fields: Field Extensions - Finite Fields - The Galois Correspondence - Applications of the Galois Correspondence - Solving Equations by Radicals - Transcendental Numbers: e and p - Skew Field Theory - Each chapter includes a set of exercises
Publisher: CRC Press
ISBN: 1439863520
Category : Mathematics
Languages : en
Pages : 264
Book Description
This text presents the concepts of higher algebra in a comprehensive and modern way for self-study and as a basis for a high-level undergraduate course. The author is one of the preeminent researchers in this field and brings the reader up to the recent frontiers of research including never-before-published material. From the table of contents: - Groups: Monoids and Groups - Cauchyís Theorem - Normal Subgroups - Classifying Groups - Finite Abelian Groups - Generators and Relations - When Is a Group a Group? (Cayley's Theorem) - Sylow Subgroups - Solvable Groups - Rings and Polynomials: An Introduction to Rings - The Structure Theory of Rings - The Field of Fractions - Polynomials and Euclidean Domains - Principal Ideal Domains - Famous Results from Number Theory - I Fields: Field Extensions - Finite Fields - The Galois Correspondence - Applications of the Galois Correspondence - Solving Equations by Radicals - Transcendental Numbers: e and p - Skew Field Theory - Each chapter includes a set of exercises