Author: Rudolf Lidl
Publisher: Cambridge University Press
ISBN: 9780521392310
Category : Mathematics
Languages : en
Pages : 784
Book Description
This book is devoted entirely to the theory of finite fields.
Lectures on Finite Fields
Author: Xiang-dong Hou
Publisher: American Mathematical Soc.
ISBN: 1470442892
Category : Mathematics
Languages : en
Pages : 242
Book Description
The theory of finite fields encompasses algebra, combinatorics, and number theory and has furnished widespread applications in other areas of mathematics and computer science. This book is a collection of selected topics in the theory of finite fields and related areas. The topics include basic facts about finite fields, polynomials over finite fields, Gauss sums, algebraic number theory and cyclotomic fields, zeros of polynomials over finite fields, and classical groups over finite fields. The book is mostly self-contained, and the material covered is accessible to readers with the knowledge of graduate algebra; the only exception is a section on function fields. Each chapter is supplied with a set of exercises. The book can be adopted as a text for a second year graduate course or used as a reference by researchers.
Publisher: American Mathematical Soc.
ISBN: 1470442892
Category : Mathematics
Languages : en
Pages : 242
Book Description
The theory of finite fields encompasses algebra, combinatorics, and number theory and has furnished widespread applications in other areas of mathematics and computer science. This book is a collection of selected topics in the theory of finite fields and related areas. The topics include basic facts about finite fields, polynomials over finite fields, Gauss sums, algebraic number theory and cyclotomic fields, zeros of polynomials over finite fields, and classical groups over finite fields. The book is mostly self-contained, and the material covered is accessible to readers with the knowledge of graduate algebra; the only exception is a section on function fields. Each chapter is supplied with a set of exercises. The book can be adopted as a text for a second year graduate course or used as a reference by researchers.
Finite Fields
Author: Rudolf Lidl
Publisher: Cambridge University Press
ISBN: 9780521392310
Category : Mathematics
Languages : en
Pages : 784
Book Description
This book is devoted entirely to the theory of finite fields.
Publisher: Cambridge University Press
ISBN: 9780521392310
Category : Mathematics
Languages : en
Pages : 784
Book Description
This book is devoted entirely to the theory of finite fields.
Handbook of Finite Fields
Author: Gary L. Mullen
Publisher: CRC Press
ISBN: 1439873828
Category : Computers
Languages : en
Pages : 1048
Book Description
Poised to become the leading reference in the field, the Handbook of Finite Fields is exclusively devoted to the theory and applications of finite fields. More than 80 international contributors compile state-of-the-art research in this definitive handbook. Edited by two renowned researchers, the book uses a uniform style and format throughout and
Publisher: CRC Press
ISBN: 1439873828
Category : Computers
Languages : en
Pages : 1048
Book Description
Poised to become the leading reference in the field, the Handbook of Finite Fields is exclusively devoted to the theory and applications of finite fields. More than 80 international contributors compile state-of-the-art research in this definitive handbook. Edited by two renowned researchers, the book uses a uniform style and format throughout and
Finite Fields and Applications
Author: Gary L. Mullen
Publisher: American Mathematical Soc.
ISBN: 0821844180
Category : Computers
Languages : en
Pages : 190
Book Description
Finite fields Combinatorics Algebraic coding theory Cryptography Background in number theory and abstract algebra Hints for selected exercises References Index.
Publisher: American Mathematical Soc.
ISBN: 0821844180
Category : Computers
Languages : en
Pages : 190
Book Description
Finite fields Combinatorics Algebraic coding theory Cryptography Background in number theory and abstract algebra Hints for selected exercises References Index.
Lectures on Finite Fields and Galois Rings
Author: Zhe-Xian Wan
Publisher: World Scientific
ISBN: 9789812385703
Category : Mathematics
Languages : en
Pages : 360
Book Description
This is a textbook for graduate and upper level undergraduate students in mathematics, computer science, communication engineering and other fields. The explicit construction of finite fields and the computation in finite fields are emphasised. In particular, the construction of irreducible polynomials and the normal basis of finite fields are included. The essentials of Galois rings are also presented. This invaluable book has been written in a friendly style, so that lecturers can easily use it as a text and students can use it for self-study. A great number of exercises have been incorporated.
Publisher: World Scientific
ISBN: 9789812385703
Category : Mathematics
Languages : en
Pages : 360
Book Description
This is a textbook for graduate and upper level undergraduate students in mathematics, computer science, communication engineering and other fields. The explicit construction of finite fields and the computation in finite fields are emphasised. In particular, the construction of irreducible polynomials and the normal basis of finite fields are included. The essentials of Galois rings are also presented. This invaluable book has been written in a friendly style, so that lecturers can easily use it as a text and students can use it for self-study. A great number of exercises have been incorporated.
Introduction to Finite Fields and Their Applications
Author: Rudolf Lidl
Publisher:
ISBN: 9780521307062
Category : Mathematics
Languages : en
Pages : 407
Book Description
The first part of this book presents an introduction to the theory of finite fields, with emphasis on those aspects that are relevant for applications. The second part is devoted to a discussion of the most important applications of finite fields especially information theory, algebraic coding theory and cryptology (including some very recent material that has never before appeared in book form). There is also a chapter on applications within mathematics, such as finite geometries. combinatorics. and pseudorandom sequences. Worked-out examples and list of exercises found throughout the book make it useful as a textbook.
Publisher:
ISBN: 9780521307062
Category : Mathematics
Languages : en
Pages : 407
Book Description
The first part of this book presents an introduction to the theory of finite fields, with emphasis on those aspects that are relevant for applications. The second part is devoted to a discussion of the most important applications of finite fields especially information theory, algebraic coding theory and cryptology (including some very recent material that has never before appeared in book form). There is also a chapter on applications within mathematics, such as finite geometries. combinatorics. and pseudorandom sequences. Worked-out examples and list of exercises found throughout the book make it useful as a textbook.
Equations over Finite Fields
Author: W.M. Schmidt
Publisher: Springer
ISBN: 3540381236
Category : Mathematics
Languages : en
Pages : 277
Book Description
Publisher: Springer
ISBN: 3540381236
Category : Mathematics
Languages : en
Pages : 277
Book Description
Applications of Finite Fields
Author: Alfred J. Menezes
Publisher: Springer Science & Business Media
ISBN: 1475722265
Category : Technology & Engineering
Languages : en
Pages : 229
Book Description
The theory of finite fields, whose origins can be traced back to the works of Gauss and Galois, has played a part in various branches in mathematics. Inrecent years we have witnessed a resurgence of interest in finite fields, and this is partly due to important applications in coding theory and cryptography. The purpose of this book is to introduce the reader to some of these recent developments. It should be of interest to a wide range of students, researchers and practitioners in the disciplines of computer science, engineering and mathematics. We shall focus our attention on some specific recent developments in the theory and applications of finite fields. While the topics selected are treated in some depth, we have not attempted to be encyclopedic. Among the topics studied are different methods of representing the elements of a finite field (including normal bases and optimal normal bases), algorithms for factoring polynomials over finite fields, methods for constructing irreducible polynomials, the discrete logarithm problem and its implications to cryptography, the use of elliptic curves in constructing public key cryptosystems, and the uses of algebraic geometry in constructing good error-correcting codes. To limit the size of the volume we have been forced to omit some important applications of finite fields. Some of these missing applications are briefly mentioned in the Appendix along with some key references.
Publisher: Springer Science & Business Media
ISBN: 1475722265
Category : Technology & Engineering
Languages : en
Pages : 229
Book Description
The theory of finite fields, whose origins can be traced back to the works of Gauss and Galois, has played a part in various branches in mathematics. Inrecent years we have witnessed a resurgence of interest in finite fields, and this is partly due to important applications in coding theory and cryptography. The purpose of this book is to introduce the reader to some of these recent developments. It should be of interest to a wide range of students, researchers and practitioners in the disciplines of computer science, engineering and mathematics. We shall focus our attention on some specific recent developments in the theory and applications of finite fields. While the topics selected are treated in some depth, we have not attempted to be encyclopedic. Among the topics studied are different methods of representing the elements of a finite field (including normal bases and optimal normal bases), algorithms for factoring polynomials over finite fields, methods for constructing irreducible polynomials, the discrete logarithm problem and its implications to cryptography, the use of elliptic curves in constructing public key cryptosystems, and the uses of algebraic geometry in constructing good error-correcting codes. To limit the size of the volume we have been forced to omit some important applications of finite fields. Some of these missing applications are briefly mentioned in the Appendix along with some key references.
Complex Representations of GL(2,K) for Finite Fields K
Author: Ilʹi︠a︡ Iosifovich Pi︠a︡tet︠s︡kiĭ-Shapiro
Publisher: American Mathematical Soc.
ISBN: 0821850199
Category : Mathematics
Languages : en
Pages : 84
Book Description
These are lecture notes of a course given at Tel-Aviv University. The aim of these notes is to present the theory of representations of GL(2, K) where K is a finite field. However, the presentation of the material has in mind the theory of infinite dimensional representations of GL(2, K) for local fields K.
Publisher: American Mathematical Soc.
ISBN: 0821850199
Category : Mathematics
Languages : en
Pages : 84
Book Description
These are lecture notes of a course given at Tel-Aviv University. The aim of these notes is to present the theory of representations of GL(2, K) where K is a finite field. However, the presentation of the material has in mind the theory of infinite dimensional representations of GL(2, K) for local fields K.
Finite Fields for Computer Scientists and Engineers
Author: Robert J. McEliece
Publisher: Springer Science & Business Media
ISBN: 1461319838
Category : Technology & Engineering
Languages : en
Pages : 212
Book Description
This book developed from a course on finite fields I gave at the University of Illinois at Urbana-Champaign in the Spring semester of 1979. The course was taught at the request of an exceptional group of graduate students (includ ing Anselm Blumer, Fred Garber, Evaggelos Geraniotis, Jim Lehnert, Wayne Stark, and Mark Wallace) who had just taken a course on coding theory from me. The theory of finite fields is the mathematical foundation of algebraic coding theory, but in coding theory courses there is never much time to give more than a "Volkswagen" treatment of them. But my 1979 students wanted a "Cadillac" treatment, and this book differs very little from the course I gave in response. Since 1979 I have used a subset of my course notes (correspond ing roughly to Chapters 1-6) as the text for my "Volkswagen" treatment of finite fields whenever I teach coding theory. There is, ironically, no coding theory anywhere in the book! If this book had a longer title it would be "Finite fields, mostly of char acteristic 2, for engineering and computer science applications. " It certainly does not pretend to cover the general theory of finite fields in the profound depth that the recent book of Lidl and Neidereitter (see the Bibliography) does.
Publisher: Springer Science & Business Media
ISBN: 1461319838
Category : Technology & Engineering
Languages : en
Pages : 212
Book Description
This book developed from a course on finite fields I gave at the University of Illinois at Urbana-Champaign in the Spring semester of 1979. The course was taught at the request of an exceptional group of graduate students (includ ing Anselm Blumer, Fred Garber, Evaggelos Geraniotis, Jim Lehnert, Wayne Stark, and Mark Wallace) who had just taken a course on coding theory from me. The theory of finite fields is the mathematical foundation of algebraic coding theory, but in coding theory courses there is never much time to give more than a "Volkswagen" treatment of them. But my 1979 students wanted a "Cadillac" treatment, and this book differs very little from the course I gave in response. Since 1979 I have used a subset of my course notes (correspond ing roughly to Chapters 1-6) as the text for my "Volkswagen" treatment of finite fields whenever I teach coding theory. There is, ironically, no coding theory anywhere in the book! If this book had a longer title it would be "Finite fields, mostly of char acteristic 2, for engineering and computer science applications. " It certainly does not pretend to cover the general theory of finite fields in the profound depth that the recent book of Lidl and Neidereitter (see the Bibliography) does.