Finite Elements and Fast Iterative Solvers : with Applications in Incompressible Fluid Dynamics

Finite Elements and Fast Iterative Solvers : with Applications in Incompressible Fluid Dynamics PDF Author: Howard C. Elman
Publisher: OUP Oxford
ISBN: 019152378X
Category : Computers
Languages : en
Pages : 416

Get Book Here

Book Description
The authors' intended audience is at the level of graduate students and researchers, and we believe that the text offers a valuable contribution to all finite element researchers who would like to broadened both their fundamental and applied knowledge of the field. - Spencer J. Sherwin and Robert M. Kirby, Fluid Mechanics, Vol 557, 2006.

Finite Elements and Fast Iterative Solvers : with Applications in Incompressible Fluid Dynamics

Finite Elements and Fast Iterative Solvers : with Applications in Incompressible Fluid Dynamics PDF Author: Howard C. Elman
Publisher: OUP Oxford
ISBN: 019152378X
Category : Computers
Languages : en
Pages : 416

Get Book Here

Book Description
The authors' intended audience is at the level of graduate students and researchers, and we believe that the text offers a valuable contribution to all finite element researchers who would like to broadened both their fundamental and applied knowledge of the field. - Spencer J. Sherwin and Robert M. Kirby, Fluid Mechanics, Vol 557, 2006.

Finite Elements and Fast Iterative Solvers

Finite Elements and Fast Iterative Solvers PDF Author: Howard Elman
Publisher: OUP Oxford
ISBN: 0191667919
Category : Mathematics
Languages : en
Pages : 495

Get Book Here

Book Description
This book is a description of why and how to do Scientific Computing for fundamental models of fluid flow. It contains introduction, motivation, analysis, and algorithms and is closely tied to freely available MATLAB codes that implement the methods described. The focus is on finite element approximation methods and fast iterative solution methods for the consequent linear(ized) systems arising in important problems that model incompressible fluid flow. The problems addressed are the Poisson equation, Convection-Diffusion problem, Stokes problem and Navier-Stokes problem, including new material on time-dependent problems and models of multi-physics. The corresponding iterative algebra based on preconditioned Krylov subspace and multigrid techniques is for symmetric and positive definite, nonsymmetric positive definite, symmetric indefinite and nonsymmetric indefinite matrix systems respectively. For each problem and associated solvers there is a description of how to compute together with theoretical analysis that guides the choice of approaches and describes what happens in practice in the many illustrative numerical results throughout the book (computed with the freely downloadable IFISS software). All of the numerical results should be reproducible by readers who have access to MATLAB and there is considerable scope for experimentation in the "computational laboratory " provided by the software. Developments in the field since the first edition was published have been represented in three new chapters covering optimization with PDE constraints (Chapter 5); solution of unsteady Navier-Stokes equations (Chapter 10); solution of models of buoyancy-driven flow (Chapter 11). Each chapter has many theoretical problems and practical computer exercises that involve the use of the IFISS software. This book is suitable as an introduction to iterative linear solvers or more generally as a model of Scientific Computing at an advanced undergraduate or beginning graduate level.

Finite Elements and Fast Iterative Solvers

Finite Elements and Fast Iterative Solvers PDF Author: Howard C. Elman
Publisher:
ISBN: 0199678804
Category : Mathematics
Languages : en
Pages : 495

Get Book Here

Book Description
This book describes why and how to do Scientific Computing for fundamental models of fluid flow. It contains introduction, motivation, analysis, and algorithms and is closely tied to freely available MATLAB codes that implement the methods described. The focus is on finite element approximation methods and fast iterative solution methods for the consequent linear(ized) systems arising in important problems that model incompressible fluid flow. The problems addressed are the Poisson equation, Convection-Diffusion problem, Stokes problem and Navier-Stokes problem, including new material on time-dependent problems and models of multi-physics. The corresponding iterative algebra based on preconditioned Krylov subspace and multigrid techniques is for symmetric and positive definite, nonsymmetric positive definite, symmetric indefinite and nonsymmetric indefinite matrix systems respectively. For each problem and associated solvers there is a description of how to compute together with theoretical analysis that guides the choice of approaches and describes what happens in practice in the many illustrative numerical results throughout the book (computed with the freely downloadable IFISS software). All of the numerical results should be reproducible by readers who have access to MATLAB and there is considerable scope for experimentation in the "computational laboratory" provided by the software. Developments in the field since the first edition was published have been represented in three new chapters covering optimization with PDE constraints (Chapter 5); solution of unsteady Navier-Stokes equations (Chapter 10); solution of models of buoyancy-driven flow (Chapter 11). Each chapter has many theoretical problems and practical computer exercises that involve the use of the IFISS software. This book is suitable as an introduction to iterative linear solvers or more generally as a model of Scientific Computing at an advanced undergraduate or beginning graduate level.

Iterative Methods for Sparse Linear Systems

Iterative Methods for Sparse Linear Systems PDF Author: Yousef Saad
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537

Get Book Here

Book Description
Mathematics of Computing -- General.

Finite Elements

Finite Elements PDF Author: Dietrich Braess
Publisher: Cambridge University Press
ISBN: 113946146X
Category : Mathematics
Languages : en
Pages : 348

Get Book Here

Book Description
This definitive introduction to finite element methods was thoroughly updated for this 2007 third edition, which features important material for both research and application of the finite element method. The discussion of saddle-point problems is a highlight of the book and has been elaborated to include many more nonstandard applications. The chapter on applications in elasticity now contains a complete discussion of locking phenomena. The numerical solution of elliptic partial differential equations is an important application of finite elements and the author discusses this subject comprehensively. These equations are treated as variational problems for which the Sobolev spaces are the right framework. Graduate students who do not necessarily have any particular background in differential equations, but require an introduction to finite element methods will find this text invaluable. Specifically, the chapter on finite elements in solid mechanics provides a bridge between mathematics and engineering.

Numerical Approximation of Partial Differential Equations

Numerical Approximation of Partial Differential Equations PDF Author: Alfio Quarteroni
Publisher: Springer Science & Business Media
ISBN: 3540852689
Category : Mathematics
Languages : en
Pages : 551

Get Book Here

Book Description
Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).

Automated Solution of Differential Equations by the Finite Element Method

Automated Solution of Differential Equations by the Finite Element Method PDF Author: Anders Logg
Publisher: Springer Science & Business Media
ISBN: 3642230997
Category : Computers
Languages : en
Pages : 723

Get Book Here

Book Description
This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.

Discretization Methods and Iterative Solvers Based on Domain Decomposition

Discretization Methods and Iterative Solvers Based on Domain Decomposition PDF Author: Barbara I. Wohlmuth
Publisher: Springer Science & Business Media
ISBN: 3642567673
Category : Mathematics
Languages : en
Pages : 209

Get Book Here

Book Description
Domain decomposition methods provide powerful and flexible tools for the numerical approximation of partial differential equations arising in the modeling of many interesting applications in science and engineering. This book deals with discretization techniques on non-matching triangulations and iterative solvers with particular emphasis on mortar finite elements, Schwarz methods and multigrid techniques. New results on non-standard situations as mortar methods based on dual basis functions and vector field discretizations are analyzed and illustrated by numerical results. The role of trace theorems, harmonic extensions, dual norms and weak interface conditions is emphasized. Although the original idea was used successfully more than a hundred years ago, these methods are relatively new for the numerical approximation. The possibilites of high performance computations and the interest in large- scale problems have led to an increased research activity.

Numerical Methods for Two-phase Incompressible Flows

Numerical Methods for Two-phase Incompressible Flows PDF Author: Sven Gross
Publisher: Springer Science & Business Media
ISBN: 3642196861
Category : Mathematics
Languages : en
Pages : 487

Get Book Here

Book Description
This book is the first monograph providing an introduction to and an overview of numerical methods for the simulation of two-phase incompressible flows. The Navier-Stokes equations describing the fluid dynamics are examined in combination with models for mass and surfactant transport. The book pursues a comprehensive approach: important modeling issues are treated, appropriate weak formulations are derived, level set and finite element discretization techniques are analyzed, efficient iterative solvers are investigated, implementational aspects are considered and the results of numerical experiments are presented. The book is aimed at M Sc and PhD students and other researchers in the fields of Numerical Analysis and Computational Engineering Science interested in the numerical treatment of two-phase incompressible flows.

Iterative Methods for Linear and Nonlinear Equations

Iterative Methods for Linear and Nonlinear Equations PDF Author: C. T. Kelley
Publisher: SIAM
ISBN: 9781611970944
Category : Mathematics
Languages : en
Pages : 179

Get Book Here

Book Description
Linear and nonlinear systems of equations are the basis for many, if not most, of the models of phenomena in science and engineering, and their efficient numerical solution is critical to progress in these areas. This is the first book to be published on nonlinear equations since the mid-1980s. Although it stresses recent developments in this area, such as Newton-Krylov methods, considerable material on linear equations has been incorporated. This book focuses on a small number of methods and treats them in depth. The author provides a complete analysis of the conjugate gradient and generalized minimum residual iterations as well as recent advances including Newton-Krylov methods, incorporation of inexactness and noise into the analysis, new proofs and implementations of Broyden's method, and globalization of inexact Newton methods. Examples, methods, and algorithmic choices are based on applications to infinite dimensional problems such as partial differential equations and integral equations. The analysis and proof techniques are constructed with the infinite dimensional setting in mind and the computational examples and exercises are based on the MATLAB environment.