Author: L.T. Tenek
Publisher: Springer Science & Business Media
ISBN: 9401590443
Category : Technology & Engineering
Languages : en
Pages : 345
Book Description
This book is an adventure into the computer analysis of three dimensional composite structures using the finite element method (FEM). It is designed for Universities, for advanced undergraduates, for graduates, for researchers, and for practising engineers in industry. The text advances gradually from the analysis of simple beams to arbitrary anisotropic and composite plates and shells; it treats both linear and nonlinear behavior. Once the basic philosophy of the method is understood, the reader may expand its application and modify the computer programs to suit particular needs. The book arose from four years research at the University of Stuttgart, Germany. We present the theory and computer programs concisely and systematically so that they can be used both for teaching and applications. We have tried to make the book simple and clear, and to show the underlying physical and mathematical ideas. The FEM has been in existence for more than 50 years. One of the authors, John Argyris, invented this technique in World War II in the course of the check on the analysis of the swept back wing of the twin engined Meteor Jet Fighter. In this work, he also consistently applied matrix calculus and introduced triangular membrane elements in conjunction with two new definitions of triangular stresses and strains which are now known as the component and total measures. In fact, he was responsible for the original formulation of the matrix force and displacement methods, the forerunners of the FEM.
Finite Element Analysis for Composite Structures
Author: L.T. Tenek
Publisher: Springer Science & Business Media
ISBN: 9401590443
Category : Technology & Engineering
Languages : en
Pages : 345
Book Description
This book is an adventure into the computer analysis of three dimensional composite structures using the finite element method (FEM). It is designed for Universities, for advanced undergraduates, for graduates, for researchers, and for practising engineers in industry. The text advances gradually from the analysis of simple beams to arbitrary anisotropic and composite plates and shells; it treats both linear and nonlinear behavior. Once the basic philosophy of the method is understood, the reader may expand its application and modify the computer programs to suit particular needs. The book arose from four years research at the University of Stuttgart, Germany. We present the theory and computer programs concisely and systematically so that they can be used both for teaching and applications. We have tried to make the book simple and clear, and to show the underlying physical and mathematical ideas. The FEM has been in existence for more than 50 years. One of the authors, John Argyris, invented this technique in World War II in the course of the check on the analysis of the swept back wing of the twin engined Meteor Jet Fighter. In this work, he also consistently applied matrix calculus and introduced triangular membrane elements in conjunction with two new definitions of triangular stresses and strains which are now known as the component and total measures. In fact, he was responsible for the original formulation of the matrix force and displacement methods, the forerunners of the FEM.
Publisher: Springer Science & Business Media
ISBN: 9401590443
Category : Technology & Engineering
Languages : en
Pages : 345
Book Description
This book is an adventure into the computer analysis of three dimensional composite structures using the finite element method (FEM). It is designed for Universities, for advanced undergraduates, for graduates, for researchers, and for practising engineers in industry. The text advances gradually from the analysis of simple beams to arbitrary anisotropic and composite plates and shells; it treats both linear and nonlinear behavior. Once the basic philosophy of the method is understood, the reader may expand its application and modify the computer programs to suit particular needs. The book arose from four years research at the University of Stuttgart, Germany. We present the theory and computer programs concisely and systematically so that they can be used both for teaching and applications. We have tried to make the book simple and clear, and to show the underlying physical and mathematical ideas. The FEM has been in existence for more than 50 years. One of the authors, John Argyris, invented this technique in World War II in the course of the check on the analysis of the swept back wing of the twin engined Meteor Jet Fighter. In this work, he also consistently applied matrix calculus and introduced triangular membrane elements in conjunction with two new definitions of triangular stresses and strains which are now known as the component and total measures. In fact, he was responsible for the original formulation of the matrix force and displacement methods, the forerunners of the FEM.
Finite Element Analysis of Composite Laminates
Author: O.O. Ochoa
Publisher: Springer Science & Business Media
ISBN: 9780792311256
Category : Science
Languages : en
Pages : 234
Book Description
Composite materials are increasingly used in aerospace, underwater, and automotive structures. To take advantage of the full potential of composite materials, structural analysts and designers must have accurate mathematical models and design methods at their disposal. The objective of this monograph is to present the laminated plate theories and their finite element models to study the deformation, strength and failure of composite structures. Emphasis is placed on engineering aspects, such as the analytical descriptions, effective analysis tools, modeling of physical features, and evaluation of approaches used to formulate and predict the response of composite structures. The first chapter presents an overview of the text. Chapter 2 is devoted to the introduction of the definitions and terminology used in composite materials and structures. Anisotropic constitutive relations and Iaminate plate theories are also reviewed. Finite element models of laminated composite plates are presented in Chapter 3. Numerical evaluation of element coefficient matrices, post-computation of strains and stresses, and sample examples of laminated plates in bending and vibration are discussed. Chapter 4 introduces damage and failure criteria in composite laminates. Finally, Chapter 5 is dedicated to case studies involving various aspects and types of composite structures. Joints, cutouts, woven composites, environmental effects, postbuckling response and failure of composite laminates are discussed by considering specific examples.
Publisher: Springer Science & Business Media
ISBN: 9780792311256
Category : Science
Languages : en
Pages : 234
Book Description
Composite materials are increasingly used in aerospace, underwater, and automotive structures. To take advantage of the full potential of composite materials, structural analysts and designers must have accurate mathematical models and design methods at their disposal. The objective of this monograph is to present the laminated plate theories and their finite element models to study the deformation, strength and failure of composite structures. Emphasis is placed on engineering aspects, such as the analytical descriptions, effective analysis tools, modeling of physical features, and evaluation of approaches used to formulate and predict the response of composite structures. The first chapter presents an overview of the text. Chapter 2 is devoted to the introduction of the definitions and terminology used in composite materials and structures. Anisotropic constitutive relations and Iaminate plate theories are also reviewed. Finite element models of laminated composite plates are presented in Chapter 3. Numerical evaluation of element coefficient matrices, post-computation of strains and stresses, and sample examples of laminated plates in bending and vibration are discussed. Chapter 4 introduces damage and failure criteria in composite laminates. Finally, Chapter 5 is dedicated to case studies involving various aspects and types of composite structures. Joints, cutouts, woven composites, environmental effects, postbuckling response and failure of composite laminates are discussed by considering specific examples.
Damage Modeling of Composite Structures
Author: Pengfei Liu
Publisher: Elsevier
ISBN: 0128209631
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
Damage Modeling of Composite Structures: Strength, Fracture, and Finite Element Analysis provides readers with a fundamental overview of the mechanics of composite materials, along with an outline of an array of modeling and numerical techniques used to analyze damage, failure mechanisms and safety tolerance. Strength prediction and finite element analysis of laminated composite structures are both covered, as are modeling techniques for delaminated composites under compression and shear. Viscoelastic cohesive/friction coupled model and finite element analysis for delamination analysis of composites under shear and for laminates under low-velocity impact are all covered at length. A concluding chapter discusses multiscale damage models and finite element analysis of composite structures. Integrates intralaminar damage and interlaminar delamination under different load patterns, covering intralaminar damage constitutive models, failure criteria, damage evolution laws, and virtual crack closure techniques Discusses numerical techniques for progressive failure analysis and modeling, as well as numerical convergence and mesh sensitivity, thus allowing for more accurate modeling Features models and methods that can be seamlessly extended to analyze failure mechanisms and safety tolerance of composites under more complex loads, and in more extreme environments Demonstrates applications of damage models and numerical methods
Publisher: Elsevier
ISBN: 0128209631
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
Damage Modeling of Composite Structures: Strength, Fracture, and Finite Element Analysis provides readers with a fundamental overview of the mechanics of composite materials, along with an outline of an array of modeling and numerical techniques used to analyze damage, failure mechanisms and safety tolerance. Strength prediction and finite element analysis of laminated composite structures are both covered, as are modeling techniques for delaminated composites under compression and shear. Viscoelastic cohesive/friction coupled model and finite element analysis for delamination analysis of composites under shear and for laminates under low-velocity impact are all covered at length. A concluding chapter discusses multiscale damage models and finite element analysis of composite structures. Integrates intralaminar damage and interlaminar delamination under different load patterns, covering intralaminar damage constitutive models, failure criteria, damage evolution laws, and virtual crack closure techniques Discusses numerical techniques for progressive failure analysis and modeling, as well as numerical convergence and mesh sensitivity, thus allowing for more accurate modeling Features models and methods that can be seamlessly extended to analyze failure mechanisms and safety tolerance of composites under more complex loads, and in more extreme environments Demonstrates applications of damage models and numerical methods
Finite Element Modelling of Composite Materials and Structures
Author: F L Matthews
Publisher: Elsevier
ISBN: 1855738929
Category : Technology & Engineering
Languages : en
Pages : 225
Book Description
Finite element modelling of composite materials and structures provides an introduction to a technique which is increasingly being used as an analytical tool for composite materials.The text is presented in four parts: - Part one sets the scene and reviews the fundamentals of composite materials together with the basic nature of FRP and its constituents. Two-dimensional stress-strain is covered, as is laminated plated theory and its limitations. - Part two reviews the basic principles of FE analysis, starting with underlying theoretical issues and going on to show how elements are derived, a model is generated and results are processed. - Part three builds on the basics of FE analysis and considers the particular issues that arise in applying finite elements to composites, especially to the layered nature of the material. - Part four deals with the application of FE to FRP composites, presenting analytical models alongside FE representations. Specific issues addressed include interlaminar stresses, fracture delamination, joints and fatigue.This book is invaluable for students of materials science and engineering, and for engineers and others wishing to expand their knowledge of structural analysis. - Covers important work on finite element analysis of composite material performance - Based on material developed for an MSc course at Imperial College, London, UK - Covers particular problems such as holes, free edges with FE results compared with experimental data and classical analysis
Publisher: Elsevier
ISBN: 1855738929
Category : Technology & Engineering
Languages : en
Pages : 225
Book Description
Finite element modelling of composite materials and structures provides an introduction to a technique which is increasingly being used as an analytical tool for composite materials.The text is presented in four parts: - Part one sets the scene and reviews the fundamentals of composite materials together with the basic nature of FRP and its constituents. Two-dimensional stress-strain is covered, as is laminated plated theory and its limitations. - Part two reviews the basic principles of FE analysis, starting with underlying theoretical issues and going on to show how elements are derived, a model is generated and results are processed. - Part three builds on the basics of FE analysis and considers the particular issues that arise in applying finite elements to composites, especially to the layered nature of the material. - Part four deals with the application of FE to FRP composites, presenting analytical models alongside FE representations. Specific issues addressed include interlaminar stresses, fracture delamination, joints and fatigue.This book is invaluable for students of materials science and engineering, and for engineers and others wishing to expand their knowledge of structural analysis. - Covers important work on finite element analysis of composite material performance - Based on material developed for an MSc course at Imperial College, London, UK - Covers particular problems such as holes, free edges with FE results compared with experimental data and classical analysis
Finite Element Analysis of Composite Materials using AbaqusTM
Author: Ever J. Barbero
Publisher: CRC Press
ISBN: 1466516631
Category : Mathematics
Languages : en
Pages : 445
Book Description
Developed from the author's graduate-level course on advanced mechanics of composite materials, Finite Element Analysis of Composite Materials with Abaqus shows how powerful finite element tools address practical problems in the structural analysis of composites. Unlike other texts, this one takes the theory to a hands-on level by actually solving
Publisher: CRC Press
ISBN: 1466516631
Category : Mathematics
Languages : en
Pages : 445
Book Description
Developed from the author's graduate-level course on advanced mechanics of composite materials, Finite Element Analysis of Composite Materials with Abaqus shows how powerful finite element tools address practical problems in the structural analysis of composites. Unlike other texts, this one takes the theory to a hands-on level by actually solving
Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams
Author: Xiaoshan Lin
Publisher: Woodhead Publishing
ISBN: 0128169001
Category : Technology & Engineering
Languages : en
Pages : 258
Book Description
Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams presents advanced methods and techniques for the analysis of composite and FRP reinforced concrete beams. The title introduces detailed numerical modeling methods and the modeling of the structural behavior of composite beams, including critical interfacial bond-slip behavior. It covers a new family of composite beam elements developed by the authors. Other sections cover nonlinear finite element analysis procedures and the numerical modeling techniques used in commercial finite element software that will be of particular interest to engineers and researchers executing numerical simulations. - Gives advanced methods and techniques for the analysis of composite and fiber Reinforced Plastic (FRP) and reinforced concrete beams - Presents new composite beam elements developed by the authors - Introduces numerical techniques for the development of effective finite element models using commercial software - Discusses the critical issues encountered in structural analysis - Maintains a clear focus on advanced numerical modeling
Publisher: Woodhead Publishing
ISBN: 0128169001
Category : Technology & Engineering
Languages : en
Pages : 258
Book Description
Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams presents advanced methods and techniques for the analysis of composite and FRP reinforced concrete beams. The title introduces detailed numerical modeling methods and the modeling of the structural behavior of composite beams, including critical interfacial bond-slip behavior. It covers a new family of composite beam elements developed by the authors. Other sections cover nonlinear finite element analysis procedures and the numerical modeling techniques used in commercial finite element software that will be of particular interest to engineers and researchers executing numerical simulations. - Gives advanced methods and techniques for the analysis of composite and fiber Reinforced Plastic (FRP) and reinforced concrete beams - Presents new composite beam elements developed by the authors - Introduces numerical techniques for the development of effective finite element models using commercial software - Discusses the critical issues encountered in structural analysis - Maintains a clear focus on advanced numerical modeling
Hybrid Finite Element Method for Stress Analysis of Laminated Composites
Author: Suong Van Hoa
Publisher: Springer Science & Business Media
ISBN: 9780792381365
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
This book has one single purpose: to present the development of the partial hybrid finite element method for the stress analysis of laminated composite structures. The reason for this presentation is because the authors believe that partial hybrid finite element method is more efficient that the displacement based finite element method for the stress analysis oflaminated composites. In fact, the examples in chapter 5 of this book show that the partial hybrid finite element method is about 5 times more efficient than the displacement based finite element method. Since there is a great need for accurate and efficient calculation of interlaminar stresses for the design using composites, the partial hybrid finite method does provide one possible solution. Hybrid finite method has been in existence since 1964 and a significant amount of work has been done on the topic. However, the authors are not aware of any systematic piece of literature that gives a detailed presentation of the method. Chapters of the displacement finite element method and the evolution 1 and 2 present a sununary of the hybrid finite element method. Hopefully, these two chapters can provide the readers with an appreciation for the difference between the displacement finite element method and the hybrid finite element. It also should prepare the readers for the introduction of partial hybrid finite element method presented in chapter 3.
Publisher: Springer Science & Business Media
ISBN: 9780792381365
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
This book has one single purpose: to present the development of the partial hybrid finite element method for the stress analysis of laminated composite structures. The reason for this presentation is because the authors believe that partial hybrid finite element method is more efficient that the displacement based finite element method for the stress analysis oflaminated composites. In fact, the examples in chapter 5 of this book show that the partial hybrid finite element method is about 5 times more efficient than the displacement based finite element method. Since there is a great need for accurate and efficient calculation of interlaminar stresses for the design using composites, the partial hybrid finite method does provide one possible solution. Hybrid finite method has been in existence since 1964 and a significant amount of work has been done on the topic. However, the authors are not aware of any systematic piece of literature that gives a detailed presentation of the method. Chapters of the displacement finite element method and the evolution 1 and 2 present a sununary of the hybrid finite element method. Hopefully, these two chapters can provide the readers with an appreciation for the difference between the displacement finite element method and the hybrid finite element. It also should prepare the readers for the introduction of partial hybrid finite element method presented in chapter 3.
Design and Analysis of Composite Structures
Author: Christos Kassapoglou
Publisher: John Wiley & Sons
ISBN: 1119957060
Category : Technology & Engineering
Languages : en
Pages : 303
Book Description
Design and Analysis of Composite Structures enables graduate students and engineers to generate meaningful and robust designs of complex composite structures. Combining analysis and design methods for structural components, the book begins with simple topics such as skins and stiffeners and progresses through to entire components of fuselages and wings. Starting with basic mathematical derivation followed by simplifications used in real-world design, Design and Analysis of Composite Structures presents the level of accuracy and range of applicability of each method. Examples taken from actual applications are worked out in detail to show how the concepts are applied, solving the same design problem with different methods based on different drivers (e.g. cost or weight) to show how the final configuration changes as the requirements and approach change. Provides a toolkit of analysis and design methods to most situations encountered in practice, as well as analytical frameworks and the means to solving them for tackling less frequent problems. Presents solutions applicable to optimization schemes without having to run finite element models at each iteration, speeding up the design process and allowing examination of several more alternatives than traditional approaches. Includes guidelines showing how decisions based on manufacturing considerations affect weight and how weight optimization may adversely affect the cost. Accompanied by a website at www.wiley.com/go/kassapoglou hosting lecture slides and solutions to the exercises for instructors.
Publisher: John Wiley & Sons
ISBN: 1119957060
Category : Technology & Engineering
Languages : en
Pages : 303
Book Description
Design and Analysis of Composite Structures enables graduate students and engineers to generate meaningful and robust designs of complex composite structures. Combining analysis and design methods for structural components, the book begins with simple topics such as skins and stiffeners and progresses through to entire components of fuselages and wings. Starting with basic mathematical derivation followed by simplifications used in real-world design, Design and Analysis of Composite Structures presents the level of accuracy and range of applicability of each method. Examples taken from actual applications are worked out in detail to show how the concepts are applied, solving the same design problem with different methods based on different drivers (e.g. cost or weight) to show how the final configuration changes as the requirements and approach change. Provides a toolkit of analysis and design methods to most situations encountered in practice, as well as analytical frameworks and the means to solving them for tackling less frequent problems. Presents solutions applicable to optimization schemes without having to run finite element models at each iteration, speeding up the design process and allowing examination of several more alternatives than traditional approaches. Includes guidelines showing how decisions based on manufacturing considerations affect weight and how weight optimization may adversely affect the cost. Accompanied by a website at www.wiley.com/go/kassapoglou hosting lecture slides and solutions to the exercises for instructors.
Finite Element Analysis of Structures through Unified Formulation
Author: Erasmo Carrera
Publisher: John Wiley & Sons
ISBN: 1118536657
Category : Mathematics
Languages : en
Pages : 569
Book Description
The finite element method (FEM) is a computational tool widely used to design and analyse complex structures. Currently, there are a number of different approaches to analysis using the FEM that vary according to the type of structure being analysed: beams and plates may use 1D or 2D approaches, shells and solids 2D or 3D approaches, and methods that work for one structure are typically not optimized to work for another. Finite Element Analysis of Structures Through Unified Formulation deals with the FEM used for the analysis of the mechanics of structures in the case of linear elasticity. The novelty of this book is that the finite elements (FEs) are formulated on the basis of a class of theories of structures known as the Carrera Unified Formulation (CUF). It formulates 1D, 2D and 3D FEs on the basis of the same 'fundamental nucleus' that comes from geometrical relations and Hooke's law, and presents both 1D and 2D refined FEs that only have displacement variables as in 3D elements. It also covers 1D and 2D FEs that make use of 'real' physical surfaces rather than ’artificial’ mathematical surfaces which are difficult to interface in CAD/CAE software. Key features: Covers how the refined formulation can be easily and conveniently used to analyse laminated structures, such as sandwich and composite structures, and to deal with multifield problems Shows the performance of different FE models through the 'best theory diagram' which allows different models to be compared in terms of accuracy and computational cost Introduces an axiomatic/asymptotic approach that reduces the computational cost of the structural analysis without affecting the accuracy Introduces an innovative 'component-wise' approach to deal with complex structures Accompanied by a website hosting the dedicated software package MUL2 (www.mul2.com) Finite Element Analysis of Structures Through Unified Formulation is a valuable reference for researchers and practitioners, and is also a useful source of information for graduate students in civil, mechanical and aerospace engineering.
Publisher: John Wiley & Sons
ISBN: 1118536657
Category : Mathematics
Languages : en
Pages : 569
Book Description
The finite element method (FEM) is a computational tool widely used to design and analyse complex structures. Currently, there are a number of different approaches to analysis using the FEM that vary according to the type of structure being analysed: beams and plates may use 1D or 2D approaches, shells and solids 2D or 3D approaches, and methods that work for one structure are typically not optimized to work for another. Finite Element Analysis of Structures Through Unified Formulation deals with the FEM used for the analysis of the mechanics of structures in the case of linear elasticity. The novelty of this book is that the finite elements (FEs) are formulated on the basis of a class of theories of structures known as the Carrera Unified Formulation (CUF). It formulates 1D, 2D and 3D FEs on the basis of the same 'fundamental nucleus' that comes from geometrical relations and Hooke's law, and presents both 1D and 2D refined FEs that only have displacement variables as in 3D elements. It also covers 1D and 2D FEs that make use of 'real' physical surfaces rather than ’artificial’ mathematical surfaces which are difficult to interface in CAD/CAE software. Key features: Covers how the refined formulation can be easily and conveniently used to analyse laminated structures, such as sandwich and composite structures, and to deal with multifield problems Shows the performance of different FE models through the 'best theory diagram' which allows different models to be compared in terms of accuracy and computational cost Introduces an axiomatic/asymptotic approach that reduces the computational cost of the structural analysis without affecting the accuracy Introduces an innovative 'component-wise' approach to deal with complex structures Accompanied by a website hosting the dedicated software package MUL2 (www.mul2.com) Finite Element Analysis of Structures Through Unified Formulation is a valuable reference for researchers and practitioners, and is also a useful source of information for graduate students in civil, mechanical and aerospace engineering.
Finite Element Analysis and Design of Steel and Steel–Concrete Composite Bridges
Author: Ehab Ellobody
Publisher: Butterworth-Heinemann
ISBN: 0124173039
Category : Technology & Engineering
Languages : en
Pages : 683
Book Description
In recent years, bridge engineers and researchers are increasingly turning to the finite element method for the design of Steel and Steel-Concrete Composite Bridges. However, the complexity of the method has made the transition slow. Based on twenty years of experience, Finite Element Analysis and Design of Steel and Steel-Concrete Composite Bridges provides structural engineers and researchers with detailed modeling techniques for creating robust design models. The book's seven chapters begin with an overview of the various forms of modern steel and steel–concrete composite bridges as well as current design codes. This is followed by self-contained chapters concerning: nonlinear material behavior of the bridge components, applied loads and stability of steel and steel–concrete composite bridges, and design of steel and steel–concrete composite bridge components. - Constitutive models for construction materials including material non-linearity and geometric non-linearity - The mechanical approach including problem setup, strain energy, external energy and potential energy), mathematics behind the method - Commonly available finite elements codes for the design of steel bridges - Explains how the design information from Finite Element Analysis is incorporated into Building information models to obtain quantity information, cost analysis
Publisher: Butterworth-Heinemann
ISBN: 0124173039
Category : Technology & Engineering
Languages : en
Pages : 683
Book Description
In recent years, bridge engineers and researchers are increasingly turning to the finite element method for the design of Steel and Steel-Concrete Composite Bridges. However, the complexity of the method has made the transition slow. Based on twenty years of experience, Finite Element Analysis and Design of Steel and Steel-Concrete Composite Bridges provides structural engineers and researchers with detailed modeling techniques for creating robust design models. The book's seven chapters begin with an overview of the various forms of modern steel and steel–concrete composite bridges as well as current design codes. This is followed by self-contained chapters concerning: nonlinear material behavior of the bridge components, applied loads and stability of steel and steel–concrete composite bridges, and design of steel and steel–concrete composite bridge components. - Constitutive models for construction materials including material non-linearity and geometric non-linearity - The mechanical approach including problem setup, strain energy, external energy and potential energy), mathematics behind the method - Commonly available finite elements codes for the design of steel bridges - Explains how the design information from Finite Element Analysis is incorporated into Building information models to obtain quantity information, cost analysis