Author: Williams Lefebvre
Publisher: Academic Press
ISBN: 0128047453
Category : Science
Languages : en
Pages : 418
Book Description
Atom Probe Tomography is aimed at beginners and researchers interested in expanding their expertise in this area. It provides the theoretical background and practical information necessary to investigate how materials work using atom probe microscopy techniques, and includes detailed explanations of the fundamentals, the instrumentation, contemporary specimen preparation techniques, and experimental details, as well as an overview of the results that can be obtained. The book emphasizes processes for assessing data quality and the proper implementation of advanced data mining algorithms. For those more experienced in the technique, this book will serve as a single comprehensive source of indispensable reference information, tables, and techniques. Both beginner and expert will value the way the book is set out in the context of materials science and engineering. In addition, its references to key research outcomes based upon the training program held at the University of Rouen—one of the leading scientific research centers exploring the various aspects of the instrument—will further enhance understanding and the learning process. - Provides an introduction to the capabilities and limitations of atom probe tomography when analyzing materials - Written for both experienced researchers and new users - Includes exercises, along with corrections, for users to practice the techniques discussed - Contains coverage of more advanced and less widespread techniques, such as correlative APT and STEM microscopy
Atom Probe Tomography
Author: Williams Lefebvre
Publisher: Academic Press
ISBN: 0128047453
Category : Science
Languages : en
Pages : 418
Book Description
Atom Probe Tomography is aimed at beginners and researchers interested in expanding their expertise in this area. It provides the theoretical background and practical information necessary to investigate how materials work using atom probe microscopy techniques, and includes detailed explanations of the fundamentals, the instrumentation, contemporary specimen preparation techniques, and experimental details, as well as an overview of the results that can be obtained. The book emphasizes processes for assessing data quality and the proper implementation of advanced data mining algorithms. For those more experienced in the technique, this book will serve as a single comprehensive source of indispensable reference information, tables, and techniques. Both beginner and expert will value the way the book is set out in the context of materials science and engineering. In addition, its references to key research outcomes based upon the training program held at the University of Rouen—one of the leading scientific research centers exploring the various aspects of the instrument—will further enhance understanding and the learning process. - Provides an introduction to the capabilities and limitations of atom probe tomography when analyzing materials - Written for both experienced researchers and new users - Includes exercises, along with corrections, for users to practice the techniques discussed - Contains coverage of more advanced and less widespread techniques, such as correlative APT and STEM microscopy
Publisher: Academic Press
ISBN: 0128047453
Category : Science
Languages : en
Pages : 418
Book Description
Atom Probe Tomography is aimed at beginners and researchers interested in expanding their expertise in this area. It provides the theoretical background and practical information necessary to investigate how materials work using atom probe microscopy techniques, and includes detailed explanations of the fundamentals, the instrumentation, contemporary specimen preparation techniques, and experimental details, as well as an overview of the results that can be obtained. The book emphasizes processes for assessing data quality and the proper implementation of advanced data mining algorithms. For those more experienced in the technique, this book will serve as a single comprehensive source of indispensable reference information, tables, and techniques. Both beginner and expert will value the way the book is set out in the context of materials science and engineering. In addition, its references to key research outcomes based upon the training program held at the University of Rouen—one of the leading scientific research centers exploring the various aspects of the instrument—will further enhance understanding and the learning process. - Provides an introduction to the capabilities and limitations of atom probe tomography when analyzing materials - Written for both experienced researchers and new users - Includes exercises, along with corrections, for users to practice the techniques discussed - Contains coverage of more advanced and less widespread techniques, such as correlative APT and STEM microscopy
Field Ion Microscopy
Author: Erwin W. Müller
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 340
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 340
Book Description
Helium Ion Microscopy
Author: Gregor Hlawacek
Publisher: Springer
ISBN: 9783319419886
Category : Science
Languages : en
Pages : 0
Book Description
This book covers the fundamentals of Helium Ion Microscopy (HIM) including the Gas Field Ion Source (GFIS), column and contrast formation. It also provides first hand information on nanofabrication and high resolution imaging. Relevant theoretical models and the existing simulation approaches are discussed in an extra section. The structure of the book allows the novice to get acquainted with the specifics of the technique needed to understand the more applied chapters in the second half of the volume. The expert reader will find a complete reference of the technique covering all important applications in several chapters written by the leading experts in the field. This includes imaging of biological samples, resist and precursor based nanofabrication, applications in semiconductor industry, using Helium as well as Neon and many more. The fundamental part allows the regular HIM user to deepen his understanding of the method. A final chapter by Bill Ward, one of the pioneers of HIM, covering the historical developments leading to the existing tool complements the content.
Publisher: Springer
ISBN: 9783319419886
Category : Science
Languages : en
Pages : 0
Book Description
This book covers the fundamentals of Helium Ion Microscopy (HIM) including the Gas Field Ion Source (GFIS), column and contrast formation. It also provides first hand information on nanofabrication and high resolution imaging. Relevant theoretical models and the existing simulation approaches are discussed in an extra section. The structure of the book allows the novice to get acquainted with the specifics of the technique needed to understand the more applied chapters in the second half of the volume. The expert reader will find a complete reference of the technique covering all important applications in several chapters written by the leading experts in the field. This includes imaging of biological samples, resist and precursor based nanofabrication, applications in semiconductor industry, using Helium as well as Neon and many more. The fundamental part allows the regular HIM user to deepen his understanding of the method. A final chapter by Bill Ward, one of the pioneers of HIM, covering the historical developments leading to the existing tool complements the content.
Field-Ion Microscopy
Author: John J. Hren
Publisher: Springer
ISBN: 1489965130
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
Publisher: Springer
ISBN: 1489965130
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
Field Emission and Field Ionization
Author: Robert Gomer
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 216
Book Description
Market: Students and researchers in vacuum and surface science, microscopy, and semiconductor physics. This definitive work was based on four lectures presented at Harvard University in 1958. When it was written, field emission was one of the few techniques available for surface studies and the attainment of ultra-high vacuum was a little-known art. Though more sophisticated treatments have since been developed, Gomer's pioneering work remains valid to this day.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 216
Book Description
Market: Students and researchers in vacuum and surface science, microscopy, and semiconductor physics. This definitive work was based on four lectures presented at Harvard University in 1958. When it was written, field emission was one of the few techniques available for surface studies and the attainment of ultra-high vacuum was a little-known art. Though more sophisticated treatments have since been developed, Gomer's pioneering work remains valid to this day.
Atom Probe Tomography
Author: Michael K. Miller
Publisher: Springer Science & Business Media
ISBN: 1461542812
Category : Technology & Engineering
Languages : en
Pages : 247
Book Description
The microanalytical technique of atom probe tomography (APT) permits the spatial coordinates and elemental identities of the individual atoms within a small volume to be determined with near atomic resolution. Therefore, atom probe tomography provides a technique for acquiring atomic resolution three dimensional images of the solute distribution within the microstructures of materials. This monograph is designed to provide researchers and students the necessary information to plan and experimentally conduct an atom probe tomography experiment. The techniques required to visualize and to analyze the resulting three-dimensional data are also described. The monograph is organized into chapters each covering a specific aspect of the technique. The development of this powerful microanalytical technique from the origins offield ion microscopy in 1951, through the first three-dimensional atom probe prototype built in 1986 to today's commercial state-of-the-art three dimensional atom probe is documented in chapter 1. A general introduction to atom probe tomography is also presented in chapter 1. The various methods to fabricate suitable needle-shaped specimens are presented in chapter 2. The procedure to form field ion images of the needle-shaped specimen is described in chapter 3. In addition, the appearance of microstructural features and the information that may be estimated from field ion microscopy are summarized. A brief account of the theoretical basis for processes of field ionization and field evaporation is also included.
Publisher: Springer Science & Business Media
ISBN: 1461542812
Category : Technology & Engineering
Languages : en
Pages : 247
Book Description
The microanalytical technique of atom probe tomography (APT) permits the spatial coordinates and elemental identities of the individual atoms within a small volume to be determined with near atomic resolution. Therefore, atom probe tomography provides a technique for acquiring atomic resolution three dimensional images of the solute distribution within the microstructures of materials. This monograph is designed to provide researchers and students the necessary information to plan and experimentally conduct an atom probe tomography experiment. The techniques required to visualize and to analyze the resulting three-dimensional data are also described. The monograph is organized into chapters each covering a specific aspect of the technique. The development of this powerful microanalytical technique from the origins offield ion microscopy in 1951, through the first three-dimensional atom probe prototype built in 1986 to today's commercial state-of-the-art three dimensional atom probe is documented in chapter 1. A general introduction to atom probe tomography is also presented in chapter 1. The various methods to fabricate suitable needle-shaped specimens are presented in chapter 2. The procedure to form field ion images of the needle-shaped specimen is described in chapter 3. In addition, the appearance of microstructural features and the information that may be estimated from field ion microscopy are summarized. A brief account of the theoretical basis for processes of field ionization and field evaporation is also included.
Biological Field Emission Scanning Electron Microscopy, 2 Volume Set
Author: Roland A. Fleck
Publisher: John Wiley & Sons
ISBN: 1118654064
Category : Science
Languages : en
Pages : 741
Book Description
The go‐to resource for microscopists on biological applications of field emission gun scanning electron microscopy (FEGSEM) The evolution of scanning electron microscopy technologies and capability over the past few years has revolutionized the biological imaging capabilities of the microscope—giving it the capability to examine surface structures of cellular membranes to reveal the organization of individual proteins across a membrane bilayer and the arrangement of cell cytoskeleton at a nm scale. Most notable are their improvements for field emission scanning electron microscopy (FEGSEM), which when combined with cryo-preparation techniques, has provided insight into a wide range of biological questions including the functionality of bacteria and viruses. This full-colour, must-have book for microscopists traces the development of the biological field emission scanning electron microscopy (FEGSEM) and highlights its current value in biological research as well as its future worth. Biological Field Emission Scanning Electron Microscopy highlights the present capability of the technique and informs the wider biological science community of its application in basic biological research. Starting with the theory and history of FEGSEM, the book offers chapters covering: operation (strengths and weakness, sample selection, handling, limitations, and preparation); Commercial developments and principals from the major FEGSEM manufacturers (Thermo Scientific, JEOL, HITACHI, ZEISS, Tescan); technical developments essential to bioFEGSEM; cryobio FEGSEM; cryo-FIB; FEGSEM digital-tomography; array tomography; public health research; mammalian cells and tissues; digital challenges (image collection, storage, and automated data analysis); and more. Examines the creation of the biological field emission gun scanning electron microscopy (FEGSEM) and discusses its benefits to the biological research community and future value Provides insight into the design and development philosophy behind current instrument manufacturers Covers sample handling, applications, and key supporting techniques Focuses on the biological applications of field emission gun scanning electron microscopy (FEGSEM), covering both plant and animal research Presented in full colour An important part of the Wiley-Royal Microscopical Series, Biological Field Emission Scanning Electron Microscopy is an ideal general resource for experienced academic and industrial users of electron microscopy—specifically, those with a need to understand the application, limitations, and strengths of FEGSEM.
Publisher: John Wiley & Sons
ISBN: 1118654064
Category : Science
Languages : en
Pages : 741
Book Description
The go‐to resource for microscopists on biological applications of field emission gun scanning electron microscopy (FEGSEM) The evolution of scanning electron microscopy technologies and capability over the past few years has revolutionized the biological imaging capabilities of the microscope—giving it the capability to examine surface structures of cellular membranes to reveal the organization of individual proteins across a membrane bilayer and the arrangement of cell cytoskeleton at a nm scale. Most notable are their improvements for field emission scanning electron microscopy (FEGSEM), which when combined with cryo-preparation techniques, has provided insight into a wide range of biological questions including the functionality of bacteria and viruses. This full-colour, must-have book for microscopists traces the development of the biological field emission scanning electron microscopy (FEGSEM) and highlights its current value in biological research as well as its future worth. Biological Field Emission Scanning Electron Microscopy highlights the present capability of the technique and informs the wider biological science community of its application in basic biological research. Starting with the theory and history of FEGSEM, the book offers chapters covering: operation (strengths and weakness, sample selection, handling, limitations, and preparation); Commercial developments and principals from the major FEGSEM manufacturers (Thermo Scientific, JEOL, HITACHI, ZEISS, Tescan); technical developments essential to bioFEGSEM; cryobio FEGSEM; cryo-FIB; FEGSEM digital-tomography; array tomography; public health research; mammalian cells and tissues; digital challenges (image collection, storage, and automated data analysis); and more. Examines the creation of the biological field emission gun scanning electron microscopy (FEGSEM) and discusses its benefits to the biological research community and future value Provides insight into the design and development philosophy behind current instrument manufacturers Covers sample handling, applications, and key supporting techniques Focuses on the biological applications of field emission gun scanning electron microscopy (FEGSEM), covering both plant and animal research Presented in full colour An important part of the Wiley-Royal Microscopical Series, Biological Field Emission Scanning Electron Microscopy is an ideal general resource for experienced academic and industrial users of electron microscopy—specifically, those with a need to understand the application, limitations, and strengths of FEGSEM.
Atom Probe Microscopy
Author: Baptiste Gault
Publisher: Springer Science & Business Media
ISBN: 146143436X
Category : Technology & Engineering
Languages : en
Pages : 411
Book Description
Atom probe microscopy enables the characterization of materials structure and chemistry in three dimensions with near-atomic resolution. This uniquely powerful technique has been subject to major instrumental advances over the last decade with the development of wide-field-of-view detectors and pulsed-laser-assisted evaporation that have significantly enhanced the instrument’s capabilities. The field is flourishing, and atom probe microscopy is being embraced as a mainstream characterization technique. This book covers all facets of atom probe microscopy—including field ion microscopy, field desorption microscopy and a strong emphasis on atom probe tomography. Atom Probe Microscopy is aimed at researchers of all experience levels. It will provide the beginner with the theoretical background and practical information necessary to investigate how materials work using atom probe microscopy techniques. This includes detailed explanations of the fundamentals and the instrumentation, contemporary specimen preparation techniques, experimental details, and an overview of the results that can be obtained. The book emphasizes processes for assessing data quality, and the proper implementation of advanced data mining algorithms. Those more experienced in the technique will benefit from the book as a single comprehensive source of indispensable reference information, tables and techniques. Both beginner and expert will value the way that Atom Probe Microscopy is set out in the context of materials science and engineering, and includes references to key recent research outcomes.
Publisher: Springer Science & Business Media
ISBN: 146143436X
Category : Technology & Engineering
Languages : en
Pages : 411
Book Description
Atom probe microscopy enables the characterization of materials structure and chemistry in three dimensions with near-atomic resolution. This uniquely powerful technique has been subject to major instrumental advances over the last decade with the development of wide-field-of-view detectors and pulsed-laser-assisted evaporation that have significantly enhanced the instrument’s capabilities. The field is flourishing, and atom probe microscopy is being embraced as a mainstream characterization technique. This book covers all facets of atom probe microscopy—including field ion microscopy, field desorption microscopy and a strong emphasis on atom probe tomography. Atom Probe Microscopy is aimed at researchers of all experience levels. It will provide the beginner with the theoretical background and practical information necessary to investigate how materials work using atom probe microscopy techniques. This includes detailed explanations of the fundamentals and the instrumentation, contemporary specimen preparation techniques, experimental details, and an overview of the results that can be obtained. The book emphasizes processes for assessing data quality, and the proper implementation of advanced data mining algorithms. Those more experienced in the technique will benefit from the book as a single comprehensive source of indispensable reference information, tables and techniques. Both beginner and expert will value the way that Atom Probe Microscopy is set out in the context of materials science and engineering, and includes references to key recent research outcomes.
Atom Probe Field Ion Microscopy
Author: Michael Kenneth Miller
Publisher:
ISBN: 9780198513872
Category : Atom-probe field ion microscopy
Languages : en
Pages : 546
Book Description
This book provides a definitive account of the theory, practice and applications of atom probe field ion microscopy (APFIM). The APFIM technique provides a unique method for observing and chemically identifying single atoms on solid surfaces. Recent advances in the method,which are largely dueto the present authors, now permit the atomic-scale chemistry of a solid specimen to be recognised in three dimensions. As a result of these developments, new and exciting applications are rapidly emerging in the field of material science, surface science, and catalysis. The book is a state-of-theart account of this important field, and is intended for a graduate-level readership.
Publisher:
ISBN: 9780198513872
Category : Atom-probe field ion microscopy
Languages : en
Pages : 546
Book Description
This book provides a definitive account of the theory, practice and applications of atom probe field ion microscopy (APFIM). The APFIM technique provides a unique method for observing and chemically identifying single atoms on solid surfaces. Recent advances in the method,which are largely dueto the present authors, now permit the atomic-scale chemistry of a solid specimen to be recognised in three dimensions. As a result of these developments, new and exciting applications are rapidly emerging in the field of material science, surface science, and catalysis. The book is a state-of-theart account of this important field, and is intended for a graduate-level readership.
Atom-Probe Tomography
Author: Michael K. Miller
Publisher: Springer
ISBN: 148997430X
Category : Technology & Engineering
Languages : en
Pages : 437
Book Description
Nanocharacterization by Atom Probe Tomography is a practical guide for researchers interested atomic level characterization of materials with atom probe tomography. Readers will find descriptions of the atom probe instrument and atom probe tomography technique, field ionization, field evaporation and field ion microscopy. The fundamental underlying physics principles are examined, in addition to data reconstruction and visualization, statistical data analysis methods and specimen preparation by electropolishing and FIB-based techniques. A full description of the local electrode atom probe – a new state-of-the-art instrument – is also provided, along with detailed descriptions and limitations of laser pulsing as a method to field evaporate atoms. Valuable coverage of the new ionization theory is also included, which underpins the overall technique.
Publisher: Springer
ISBN: 148997430X
Category : Technology & Engineering
Languages : en
Pages : 437
Book Description
Nanocharacterization by Atom Probe Tomography is a practical guide for researchers interested atomic level characterization of materials with atom probe tomography. Readers will find descriptions of the atom probe instrument and atom probe tomography technique, field ionization, field evaporation and field ion microscopy. The fundamental underlying physics principles are examined, in addition to data reconstruction and visualization, statistical data analysis methods and specimen preparation by electropolishing and FIB-based techniques. A full description of the local electrode atom probe – a new state-of-the-art instrument – is also provided, along with detailed descriptions and limitations of laser pulsing as a method to field evaporate atoms. Valuable coverage of the new ionization theory is also included, which underpins the overall technique.