Femtosecond Optical Parametric Oscillator Frequency Combs for Coherent Pulse Synthesis

Femtosecond Optical Parametric Oscillator Frequency Combs for Coherent Pulse Synthesis PDF Author: Richard A. McCracken
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Femtosecond Optical Parametric Oscillator Frequency Combs for Coherent Pulse Synthesis

Femtosecond Optical Parametric Oscillator Frequency Combs for Coherent Pulse Synthesis PDF Author: Richard A. McCracken
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Pulse Formation and Frequency Conversion in Dispersion-engineered Nonlinear Waveguides and Resonators

Pulse Formation and Frequency Conversion in Dispersion-engineered Nonlinear Waveguides and Resonators PDF Author: Marc P Jankowski
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Recent advances in nonlinear photonics have enabled a new class of broadband ultra-stable light sources known as optical frequency combs. These light sources have given rise to an array of new optical devices and systems, spanning applications such as spectroscopy, astronomy, remote sensing, frequency synthesis, attoscience, telecommunications, and optical clockwork. At this time, there are a number of unsolved problems within the field. Optical frequency combs are often constrained to wavelengths within the near-infrared (NIR) due to the limited variety of in mature laser gain media and host glasses, and many applications such as spectroscopy, sensing, and attoscience would benefit from the development of optical frequency combs at longer wavelength ranges such as the mid-infrared (MIR). Furthermore, the generation and stabilization of frequency combs often requires rather complicated nonlinear optical systems, which have prevented these light sources from being used outside of dedicated optics labs. This dissertation considers new approaches to frequency comb generation based on recently discovered nonlinear dynamical processes that occur in quasi-phasematched (QPM) devices with quadratic nonlinearities. A recurring theme is that the interplay of nonlinear optical effects, such as optical parametric amplification and self-phase modulation, with linear optical effects, such as dispersion, can produce qualitatively new dynamical regimes. In many cases, these dynamical regimes exhibit favorable features that potentially solve the problems discussed above. The first half of this thesis considers the pulse formation mechanisms present in optical parametric oscillators (OPOs), and discusses new operating regimes that enable the generation of MIR combs with substantially more bandwidth than the NIR comb used to drive the OPO. These devices can produce few-cycle pulses with conversion efficiencies exceeding 50% while also preserving the coherence of the frequency comb. The latter portion of this thesis studies the dynamics of femtosecond pulses in nanophotonic waveguides. Here, the geometric dispersion associated with sub-wavelength confinement be used to achieve long interaction lengths with femtosecond pulses. Using these effects we are able to achieve saturated SHG with femtojoules of pulse energy, where state-of-the-art devices previously used picojoules. In the limit of phase-mismatched SHG driven with picojoules of pulse energy we observe the formation of a coherent multi-octave supercontinuum comprised of multiple spectrally broadened harmonics. The mechanisms of spectral broadening in this system are shown to be completely unique to dispersion-engineered nanophotonic QPM devices and exhibit a number of desirable features including i) low power requirements, ii) fewer decoherence mechanisms than traditional approaches, and iii) the formation of carrier-envelope-offset beatnotes in the regions of spectral overlap between the harmonics.

Versatile Femtosecond Optical Parametric Oscillator Frequency Combs for Metrology

Versatile Femtosecond Optical Parametric Oscillator Frequency Combs for Metrology PDF Author: Karolis Balskus
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Femtosecond Optical Frequency Comb: Principle, Operation and Applications

Femtosecond Optical Frequency Comb: Principle, Operation and Applications PDF Author: Jun Ye
Publisher: Springer Science & Business Media
ISBN: 0387237917
Category : Science
Languages : en
Pages : 373

Get Book Here

Book Description
Over the last few years, there has been a convergence between the fields of ultrafast science, nonlinear optics, optical frequency metrology, and precision laser spectroscopy. These fields have been developing largely independently since the birth of the laser, reaching remarkable levels of performance. On the ultrafast frontier, pulses of only a few cycles long have been produced, while in optical spectroscopy, the precision and resolution have reached one part in Although these two achievements appear to be completely disconnected, advances in nonlinear optics provided the essential link between them. The resulting convergence has enabled unprecedented advances in the control of the electric field of the pulses produced by femtosecond mode-locked lasers. The corresponding spectrum consists of a comb of sharp spectral lines with well-defined frequencies. These new techniques and capabilities are generally known as “femtosecond comb technology. ” They have had dramatic impact on the diverse fields of precision measurement and extreme nonlinear optical physics. The historical background for these developments is provided in the Foreword by two of the pioneers of laser spectroscopy, John Hall and Theodor Hänsch. Indeed the developments described in this book were foreshadowed by Hänsch’s early work in the 1970s when he used picosecond pulses to demonstrate the connection between the time and frequency domains in laser spectroscopy. This work complemented the advances in precision laser stabilization developed by Hall.

Low Noise Frequency Comb Sources Based on Synchronously Pumped Doubly Resonant Optical Parametric Oscillators

Low Noise Frequency Comb Sources Based on Synchronously Pumped Doubly Resonant Optical Parametric Oscillators PDF Author: Chenchen Wan
Publisher:
ISBN:
Category : Mode-locked lasers
Languages : en
Pages : 151

Get Book Here

Book Description
Optical frequency combs are coherent light sources consist of thousands of equally spaced frequency lines. Frequency combs have achieved success in applications of metrology, spectroscopy and precise pulse manipulation and control. The most common way to generate frequency combs is based on mode-locked lasers which has the output spectrum of comb structures. To generate stable frequency combs, the output from mode-locked lasers need to be phase stabilized. The whole comb lines will be stabilized if the pulse train repetition rate corresponding to comb spacing and the pulse carrier envelope offset (CEO) frequency are both stabilized. The output from a laser always has fluctuations in parameters known as noise. In laser applications, noise is an important factor to limit the performance and often need to be well controlled. For example in precision measurement such as frequency metrology and precise spectroscopy, low laser intensity and phase noise is required. In mode-locked lasers there are different types of noise like intensity noise, pulse temporal position noise also known as timing jitter, optical phase noise. In term for frequency combs, these noise dynamics is more complex and often related. Understanding the noise behavior is not only of great interest in practical applications but also help understand fundamental laser physics. In this dissertation, the noise of frequency combs and mode-locked lasers will be studied in two projects. First, the CEO frequency phase noise of a synchronously pumped doubly resonant optical parametric oscillators (OPO) will be explored. This is very important for applications of the OPO as a coherent frequency comb source. Another project will focus on the intensity noise coupling in a soliton fiber oscillator, the finding of different noise coupling in soliton pulses and the dispersive waves generated from soliton perturbation can provide very practical guidance for low noise soliton laser design. OPOs are used to generate coherent laser-like radiations at which frequency the common gain material is not available. It is also a good candidate for extend frequency comb spectral range, for comb generation, the OPO is usually pumped by a comb source thus the OPO cavity needs to be synchronized to the pump pulses. Depending on whether the signal or idle light is in resonance, the OPO could be singly or doubly resonant. The doubly resonant OPO (DOPO) has much lower lasing threshold since both signal and idle are in resonance, but it also requires more cavity stability and was historically considered unstable for operation. However, recent research has proved that the synchronously pumped doubly resonant OPO could operate even without active cavity stabilization. Moreover, when the OPO is in degenerate state where the signal and idler are identical the OPO will remain frequency stabilized because it's acting as a frequency divide-by-2 system. This makes the DOPO an excellent candidate for extending the frequency comb spectral range to mid-IR by pumping with a frequency comb at near IR wavelength.In the dissertation, first a 1 um Yb-doped fiber oscillator will be frequency stabilized to generate a frequency comb. The repetition rate is locked indirectly by locking the Yb laser to a stabilization single frequency laser and the CEO frequency is locked by f-2f self-reference. The fully locked 1 um comb is then used to pump a DOPO. The DOPO can operate at either degenerate or non-degenerate states by tuning its cavity length. To characterize the OPO, its output spectral, output power will be measured. More importantly the CEO frequency of the OPO will also need to be simultaneously measured in order to verify and study the self stabilization of DOPO at degeneracy. To quantify the coherence property of the DOPO, the CEO frequency noise transfer function will also be measured, the pump comb is frequency modulated with an acousto-optic modulator (AOM) and the transfer function could be measured by measuring the DOPO CEO frequency phase noise. The DOPO would be a self-locked comb source if it fully inherits the pump comb coherence. This enables measuring the CEO frequency phase noise of the unlocked DOPO comb to be compared with the pump phase noise quantitatively. In the second part of the dissertation, the intensity noise of a soliton mode-locked laser is studied. The soliton is a pulse with perfect balance of dispersion and nonlinearity so it can propagate without any change of its spectral and temporal shape. In this project, an all-fiber Er soliton laser will be build. Due to the perturbation of cavity elements such as segmental gain and loss, the soliton generate dispersive wave that co-propagates inside the cavity. Notably the dispersive wave with the same phase shift of the soliton can interfere with the soliton and produce spectral peaks known as Kelly sidebands. In this work, the spectrally resolved intensity noise coupling in the soliton laser is studied. The results reveal that most of the intensity noise from the pump is couple to the Kelly sidebands while the soliton is much quieter in terms of intensity noise. In the last part of the dissertation, the 3D wave packets generation and measurement system are introduced. A SLM-based pulse shaper and beam shaper are used to generate special 3D optical wave packets from a mode-locked fiber laser. The programmable SLM enables generation of varies beam and pulse shapes. In particular, the so called wave bullets are generated with combination of diffraction free Bessel beams and dispersion free Airy pulses. To measure the 3D wave packets, a cross-correlation interferometer is demonstrated to have the capacity to reconstruct the full 3D intensity profiles of the complex wave packets.

A Femtosecond Optical Parametric Oscillator Near 3 Microns

A Femtosecond Optical Parametric Oscillator Near 3 Microns PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
An optical parametric oscillator operating at fundamental molecular vibrational frequencies is demonstrated. The 100 femtosecond pulses make possible coherent measurements in a new spectroscopic region.

Development and Characterisation of a Near-infrared Femtosecond Optical Parametric Oscillator Frequency Comb

Development and Characterisation of a Near-infrared Femtosecond Optical Parametric Oscillator Frequency Comb PDF Author: Teresa I. Ferreiro
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Ultrafast Phenomena XVI

Ultrafast Phenomena XVI PDF Author: Paul Corkum
Publisher: Springer Science & Business Media
ISBN: 3540959467
Category : Science
Languages : en
Pages : 1031

Get Book Here

Book Description
Ultrafast Phenomena XVI presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh speed communications. This book summarizes the results presented at the 16th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.

Ultrafast Optics V

Ultrafast Optics V PDF Author: Shuntaro Watanabe
Publisher: Springer
ISBN: 0387491198
Category : Science
Languages : en
Pages : 548

Get Book Here

Book Description
This book brings together in a single volume the most up-to-date results in the field presented at Ultrafast Optics and Applications of High Field and Short Wavelength Sources 2005. The volume contains keynote and invited contributions together with carefully selected regular contributions. The book aims at the highest level of presentation to make it useful as a reference for those working in the field.

Coherent Laser Beam Combining

Coherent Laser Beam Combining PDF Author: Arnaud Brignon
Publisher: John Wiley & Sons
ISBN: 3527652795
Category : Technology & Engineering
Languages : en
Pages : 498

Get Book Here

Book Description
Laser beam combining techniques allow increasing the power of lasers far beyond what it is possible to obtain from a single conventional laser.One step further, coherent beam combining (CBC) also helps to maintain the very unique properties of the laser emission with respect to its spectral and spatial properties. Such lasers are of major interest for many applications, including industrial, environmental, defense, and scientific applications. Recently, significant progress has beenmade in coherent beam combining lasers, with a total output power of 100 kW already achieved. Scaling analysis indicates that further increase of output power with excellent beam quality is feasible by using existing state-of-the-art lasers. Thus, the knowledge of coherent beam combining techniques will become crucial for the design of next-generation highpower lasers. The purpose of this book is to present the more recent concepts of coherent beam combining by world leader teams in the field.