Author: C.A. Desoer
Publisher: Elsevier
ISBN: 0323157793
Category : Technology & Engineering
Languages : en
Pages : 283
Book Description
Feedback Systems: Input-output Properties deals with the basic input-output properties of feedback systems. Emphasis is placed on multiinput-multioutput feedback systems made of distributed subsystems, particularly continuous-time systems. Topics range from memoryless nonlinearities to linear systems, the small gain theorem, and passivity. Norms and general theorems are also considered. This book is comprised of six chapters and begins with an overview of a few simple facts about feedback systems and simple examples of nonlinear systems that illustrate the important distinction between the questions of existence, uniqueness, continuous dependence, and boundedness with respect to bounded input and output. The next chapter describes a number of useful properties of norms and induced norms and of normed spaces. Several theorems are then presented, along with the main results concerning linear systems. These results are used to illustrate the applications of the small gain theorem to different classes of systems. The final chapter outlines the framework necessary to discuss passivity and demonstrate the applications of the passivity theorem. This monograph will be a useful resource for mathematically inclined engineers interested in feedback systems, as well as undergraduate engineering students.
Feedback Systems: Input-output Properties
Author: C.A. Desoer
Publisher: Elsevier
ISBN: 0323157793
Category : Technology & Engineering
Languages : en
Pages : 283
Book Description
Feedback Systems: Input-output Properties deals with the basic input-output properties of feedback systems. Emphasis is placed on multiinput-multioutput feedback systems made of distributed subsystems, particularly continuous-time systems. Topics range from memoryless nonlinearities to linear systems, the small gain theorem, and passivity. Norms and general theorems are also considered. This book is comprised of six chapters and begins with an overview of a few simple facts about feedback systems and simple examples of nonlinear systems that illustrate the important distinction between the questions of existence, uniqueness, continuous dependence, and boundedness with respect to bounded input and output. The next chapter describes a number of useful properties of norms and induced norms and of normed spaces. Several theorems are then presented, along with the main results concerning linear systems. These results are used to illustrate the applications of the small gain theorem to different classes of systems. The final chapter outlines the framework necessary to discuss passivity and demonstrate the applications of the passivity theorem. This monograph will be a useful resource for mathematically inclined engineers interested in feedback systems, as well as undergraduate engineering students.
Publisher: Elsevier
ISBN: 0323157793
Category : Technology & Engineering
Languages : en
Pages : 283
Book Description
Feedback Systems: Input-output Properties deals with the basic input-output properties of feedback systems. Emphasis is placed on multiinput-multioutput feedback systems made of distributed subsystems, particularly continuous-time systems. Topics range from memoryless nonlinearities to linear systems, the small gain theorem, and passivity. Norms and general theorems are also considered. This book is comprised of six chapters and begins with an overview of a few simple facts about feedback systems and simple examples of nonlinear systems that illustrate the important distinction between the questions of existence, uniqueness, continuous dependence, and boundedness with respect to bounded input and output. The next chapter describes a number of useful properties of norms and induced norms and of normed spaces. Several theorems are then presented, along with the main results concerning linear systems. These results are used to illustrate the applications of the small gain theorem to different classes of systems. The final chapter outlines the framework necessary to discuss passivity and demonstrate the applications of the passivity theorem. This monograph will be a useful resource for mathematically inclined engineers interested in feedback systems, as well as undergraduate engineering students.
Feedback Systems
Author: Karl Johan Åström
Publisher: Princeton University Press
ISBN: 069121347X
Category : Technology & Engineering
Languages : en
Pages : 523
Book Description
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory
Publisher: Princeton University Press
ISBN: 069121347X
Category : Technology & Engineering
Languages : en
Pages : 523
Book Description
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory
Biomolecular Feedback Systems
Author: Domitilla Del Vecchio
Publisher: Princeton University Press
ISBN: 1400850509
Category : Science
Languages : en
Pages : 287
Book Description
This book provides an accessible introduction to the principles and tools for modeling, analyzing, and synthesizing biomolecular systems. It begins with modeling tools such as reaction-rate equations, reduced-order models, stochastic models, and specific models of important core processes. It then describes in detail the control and dynamical systems tools used to analyze these models. These include tools for analyzing stability of equilibria, limit cycles, robustness, and parameter uncertainty. Modeling and analysis techniques are then applied to design examples from both natural systems and synthetic biomolecular circuits. In addition, this comprehensive book addresses the problem of modular composition of synthetic circuits, the tools for analyzing the extent of modularity, and the design techniques for ensuring modular behavior. It also looks at design trade-offs, focusing on perturbations due to noise and competition for shared cellular resources. Featuring numerous exercises and illustrations throughout, Biomolecular Feedback Systems is the ideal textbook for advanced undergraduates and graduate students. For researchers, it can also serve as a self-contained reference on the feedback control techniques that can be applied to biomolecular systems. Provides a user-friendly introduction to essential concepts, tools, and applications Covers the most commonly used modeling methods Addresses the modular design problem for biomolecular systems Uses design examples from both natural systems and synthetic circuits Solutions manual (available only to professors at press.princeton.edu) An online illustration package is available to professors at press.princeton.edu
Publisher: Princeton University Press
ISBN: 1400850509
Category : Science
Languages : en
Pages : 287
Book Description
This book provides an accessible introduction to the principles and tools for modeling, analyzing, and synthesizing biomolecular systems. It begins with modeling tools such as reaction-rate equations, reduced-order models, stochastic models, and specific models of important core processes. It then describes in detail the control and dynamical systems tools used to analyze these models. These include tools for analyzing stability of equilibria, limit cycles, robustness, and parameter uncertainty. Modeling and analysis techniques are then applied to design examples from both natural systems and synthetic biomolecular circuits. In addition, this comprehensive book addresses the problem of modular composition of synthetic circuits, the tools for analyzing the extent of modularity, and the design techniques for ensuring modular behavior. It also looks at design trade-offs, focusing on perturbations due to noise and competition for shared cellular resources. Featuring numerous exercises and illustrations throughout, Biomolecular Feedback Systems is the ideal textbook for advanced undergraduates and graduate students. For researchers, it can also serve as a self-contained reference on the feedback control techniques that can be applied to biomolecular systems. Provides a user-friendly introduction to essential concepts, tools, and applications Covers the most commonly used modeling methods Addresses the modular design problem for biomolecular systems Uses design examples from both natural systems and synthetic circuits Solutions manual (available only to professors at press.princeton.edu) An online illustration package is available to professors at press.princeton.edu
Feedback Control Theory
Author: John C. Doyle
Publisher: Courier Corporation
ISBN: 0486318338
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.
Publisher: Courier Corporation
ISBN: 0486318338
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.
European Control Conference 1995
Author:
Publisher: European Control Association
ISBN:
Category :
Languages : en
Pages : 882
Book Description
Proceedings of the European Control Conference 1995, Rome, Italy 5-8 September 1995
Publisher: European Control Association
ISBN:
Category :
Languages : en
Pages : 882
Book Description
Proceedings of the European Control Conference 1995, Rome, Italy 5-8 September 1995
DOE/RA.
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 204
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 204
Book Description
The Control Handbook (three volume set)
Author: William S. Levine
Publisher: CRC Press
ISBN: 1420073672
Category : Technology & Engineering
Languages : en
Pages : 3379
Book Description
At publication, The Control Handbook immediately became the definitive resource that engineers working with modern control systems required. Among its many accolades, that first edition was cited by the AAP as the Best Engineering Handbook of 1996. Now, 15 years later, William Levine has once again compiled the most comprehensive and authoritative resource on control engineering. He has fully reorganized the text to reflect the technical advances achieved since the last edition and has expanded its contents to include the multidisciplinary perspective that is making control engineering a critical component in so many fields. Now expanded from one to three volumes, The Control Handbook, Second Edition brilliantly organizes cutting-edge contributions from more than 200 leading experts representing every corner of the globe. They cover everything from basic closed-loop systems to multi-agent adaptive systems and from the control of electric motors to the control of complex networks. Progressively organized, the three volume set includes: Control System Fundamentals Control System Applications Control System Advanced Methods Any practicing engineer, student, or researcher working in fields as diverse as electronics, aeronautics, or biomedicine will find this handbook to be a time-saving resource filled with invaluable formulas, models, methods, and innovative thinking. In fact, any physicist, biologist, mathematician, or researcher in any number of fields developing or improving products and systems will find the answers and ideas they need. As with the first edition, the new edition not only stands as a record of accomplishment in control engineering but provides researchers with the means to make further advances.
Publisher: CRC Press
ISBN: 1420073672
Category : Technology & Engineering
Languages : en
Pages : 3379
Book Description
At publication, The Control Handbook immediately became the definitive resource that engineers working with modern control systems required. Among its many accolades, that first edition was cited by the AAP as the Best Engineering Handbook of 1996. Now, 15 years later, William Levine has once again compiled the most comprehensive and authoritative resource on control engineering. He has fully reorganized the text to reflect the technical advances achieved since the last edition and has expanded its contents to include the multidisciplinary perspective that is making control engineering a critical component in so many fields. Now expanded from one to three volumes, The Control Handbook, Second Edition brilliantly organizes cutting-edge contributions from more than 200 leading experts representing every corner of the globe. They cover everything from basic closed-loop systems to multi-agent adaptive systems and from the control of electric motors to the control of complex networks. Progressively organized, the three volume set includes: Control System Fundamentals Control System Applications Control System Advanced Methods Any practicing engineer, student, or researcher working in fields as diverse as electronics, aeronautics, or biomedicine will find this handbook to be a time-saving resource filled with invaluable formulas, models, methods, and innovative thinking. In fact, any physicist, biologist, mathematician, or researcher in any number of fields developing or improving products and systems will find the answers and ideas they need. As with the first edition, the new edition not only stands as a record of accomplishment in control engineering but provides researchers with the means to make further advances.
Adaptive Systems in Control and Signal Processing 1983
Author: I. D. Landau
Publisher: Elsevier
ISBN: 148319065X
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
Adaptive Systems in Control and Signal Processing 1983 is a compendium of papers presented at the International Federation of Automatic Control in San Francisco on June 20-22, 1983. One paper addresses the results through comparative alternative algorithms in adaptive control of linear time invariant and time varying systems. Another paper presents a method in computer simulation of a wide range of stable plants to achieve an alternative approach in designing an adaptive control system. The book also compares the stability and the sensitivity approach involving the design of model-reference adaptive systems. The authors involved explain that the sensitivity concept determines the "dynamic speed of adaptation," while the stability concept focuses on finding a linear compensator for any deviant signal. One paper proposes an indirect adaptive control algorithm for MIMO square full rank minimum phase systems, while another paper discusses the application of the discrete time multivariable adaptive control system, to non-minimum phase plants with an unknown dead time. This book can prove valuable to engineers and researchers of electrical, computer, and mechanical engineering. It can also be helpful for technicians and students dealing with automatic control and telecontrol.
Publisher: Elsevier
ISBN: 148319065X
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
Adaptive Systems in Control and Signal Processing 1983 is a compendium of papers presented at the International Federation of Automatic Control in San Francisco on June 20-22, 1983. One paper addresses the results through comparative alternative algorithms in adaptive control of linear time invariant and time varying systems. Another paper presents a method in computer simulation of a wide range of stable plants to achieve an alternative approach in designing an adaptive control system. The book also compares the stability and the sensitivity approach involving the design of model-reference adaptive systems. The authors involved explain that the sensitivity concept determines the "dynamic speed of adaptation," while the stability concept focuses on finding a linear compensator for any deviant signal. One paper proposes an indirect adaptive control algorithm for MIMO square full rank minimum phase systems, while another paper discusses the application of the discrete time multivariable adaptive control system, to non-minimum phase plants with an unknown dead time. This book can prove valuable to engineers and researchers of electrical, computer, and mechanical engineering. It can also be helpful for technicians and students dealing with automatic control and telecontrol.
Emerging Applications of Control and Systems Theory
Author: Roberto Tempo
Publisher: Springer
ISBN: 3319670689
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
This book celebrates Professor Mathukumalli Vidyasagar’s outstanding achievements in systems, control, robotics, statistical learning, computational biology, and allied areas. The contributions in the book summarize the content of invited lectures given at the workshop “Emerging Applications of Control and Systems Theory” (EACST17) held at the University of Texas at Dallas in late September 2017 in honor of Professor Vidyasagar’s seventieth birthday. These contributions are the work of twenty-eight distinguished speakers from eight countries and are related to Professor Vidyasagar’s areas of research. This Festschrift volume will remain as a permanent scientific record of this event.
Publisher: Springer
ISBN: 3319670689
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
This book celebrates Professor Mathukumalli Vidyasagar’s outstanding achievements in systems, control, robotics, statistical learning, computational biology, and allied areas. The contributions in the book summarize the content of invited lectures given at the workshop “Emerging Applications of Control and Systems Theory” (EACST17) held at the University of Texas at Dallas in late September 2017 in honor of Professor Vidyasagar’s seventieth birthday. These contributions are the work of twenty-eight distinguished speakers from eight countries and are related to Professor Vidyasagar’s areas of research. This Festschrift volume will remain as a permanent scientific record of this event.
Nonlinear Industrial Control Systems
Author: Michael J. Grimble
Publisher: Springer Nature
ISBN: 1447174577
Category : Technology & Engineering
Languages : en
Pages : 778
Book Description
Nonlinear Industrial Control Systems presents a range of mostly optimisation-based methods for severely nonlinear systems; it discusses feedforward and feedback control and tracking control systems design. The plant models and design algorithms are provided in a MATLAB® toolbox that enable both academic examples and industrial application studies to be repeated and evaluated, taking into account practical application and implementation problems. The text makes nonlinear control theory accessible to readers having only a background in linear systems, and concentrates on real applications of nonlinear control. It covers: different ways of modelling nonlinear systems including state space, polynomial-based, linear parameter varying, state-dependent and hybrid; design techniques for nonlinear optimal control including generalised-minimum-variance, model predictive control, quadratic-Gaussian, factorised and H∞ design methods; design philosophies that are suitable for aerospace, automotive, marine, process-control, energy systems, robotics, servo systems and manufacturing; steps in design procedures that are illustrated in design studies to define cost-functions and cope with problems such as disturbance rejection, uncertainties and integral wind-up; and baseline non-optimal control techniques such as nonlinear Smith predictors, feedback linearization, sliding mode control and nonlinear PID. Nonlinear Industrial Control Systems is valuable to engineers in industry dealing with actual nonlinear systems. It provides students with a comprehensive range of techniques and examples for solving real nonlinear control design problems.
Publisher: Springer Nature
ISBN: 1447174577
Category : Technology & Engineering
Languages : en
Pages : 778
Book Description
Nonlinear Industrial Control Systems presents a range of mostly optimisation-based methods for severely nonlinear systems; it discusses feedforward and feedback control and tracking control systems design. The plant models and design algorithms are provided in a MATLAB® toolbox that enable both academic examples and industrial application studies to be repeated and evaluated, taking into account practical application and implementation problems. The text makes nonlinear control theory accessible to readers having only a background in linear systems, and concentrates on real applications of nonlinear control. It covers: different ways of modelling nonlinear systems including state space, polynomial-based, linear parameter varying, state-dependent and hybrid; design techniques for nonlinear optimal control including generalised-minimum-variance, model predictive control, quadratic-Gaussian, factorised and H∞ design methods; design philosophies that are suitable for aerospace, automotive, marine, process-control, energy systems, robotics, servo systems and manufacturing; steps in design procedures that are illustrated in design studies to define cost-functions and cope with problems such as disturbance rejection, uncertainties and integral wind-up; and baseline non-optimal control techniques such as nonlinear Smith predictors, feedback linearization, sliding mode control and nonlinear PID. Nonlinear Industrial Control Systems is valuable to engineers in industry dealing with actual nonlinear systems. It provides students with a comprehensive range of techniques and examples for solving real nonlinear control design problems.