Author: Prashant Mhaskar
Publisher: Springer Science & Business Media
ISBN: 1447148088
Category : Technology & Engineering
Languages : en
Pages : 279
Book Description
Fault-Tolerant Process Control focuses on the development of general, yet practical, methods for the design of advanced fault-tolerant control systems; these ensure an efficient fault detection and a timely response to enhance fault recovery, prevent faults from propagating or developing into total failures, and reduce the risk of safety hazards. To this end, methods are presented for the design of advanced fault-tolerant control systems for chemical processes which explicitly deal with actuator/controller failures and sensor faults and data losses. Specifically, the book puts forward: · A framework for detection, isolation and diagnosis of actuator and sensor faults for nonlinear systems; · Controller reconfiguration and safe-parking-based fault-handling methodologies; · Integrated-data- and model-based fault-detection and isolation and fault-tolerant control methods; · Methods for handling sensor faults and data losses; and · Methods for monitoring the performance of low-level PID loops. The methodologies proposed employ nonlinear systems analysis, Lyapunov techniques, optimization, statistical methods and hybrid systems theory and are predicated upon the idea of integrating fault-detection, local feedback control, and supervisory control. The applicability and performance of the methods are demonstrated through a number of chemical process examples. Fault-Tolerant Process Control is a valuable resource for academic researchers, industrial practitioners as well as graduate students pursuing research in this area.
Fault-Tolerant Process Control
Author: Prashant Mhaskar
Publisher: Springer Science & Business Media
ISBN: 1447148088
Category : Technology & Engineering
Languages : en
Pages : 279
Book Description
Fault-Tolerant Process Control focuses on the development of general, yet practical, methods for the design of advanced fault-tolerant control systems; these ensure an efficient fault detection and a timely response to enhance fault recovery, prevent faults from propagating or developing into total failures, and reduce the risk of safety hazards. To this end, methods are presented for the design of advanced fault-tolerant control systems for chemical processes which explicitly deal with actuator/controller failures and sensor faults and data losses. Specifically, the book puts forward: · A framework for detection, isolation and diagnosis of actuator and sensor faults for nonlinear systems; · Controller reconfiguration and safe-parking-based fault-handling methodologies; · Integrated-data- and model-based fault-detection and isolation and fault-tolerant control methods; · Methods for handling sensor faults and data losses; and · Methods for monitoring the performance of low-level PID loops. The methodologies proposed employ nonlinear systems analysis, Lyapunov techniques, optimization, statistical methods and hybrid systems theory and are predicated upon the idea of integrating fault-detection, local feedback control, and supervisory control. The applicability and performance of the methods are demonstrated through a number of chemical process examples. Fault-Tolerant Process Control is a valuable resource for academic researchers, industrial practitioners as well as graduate students pursuing research in this area.
Publisher: Springer Science & Business Media
ISBN: 1447148088
Category : Technology & Engineering
Languages : en
Pages : 279
Book Description
Fault-Tolerant Process Control focuses on the development of general, yet practical, methods for the design of advanced fault-tolerant control systems; these ensure an efficient fault detection and a timely response to enhance fault recovery, prevent faults from propagating or developing into total failures, and reduce the risk of safety hazards. To this end, methods are presented for the design of advanced fault-tolerant control systems for chemical processes which explicitly deal with actuator/controller failures and sensor faults and data losses. Specifically, the book puts forward: · A framework for detection, isolation and diagnosis of actuator and sensor faults for nonlinear systems; · Controller reconfiguration and safe-parking-based fault-handling methodologies; · Integrated-data- and model-based fault-detection and isolation and fault-tolerant control methods; · Methods for handling sensor faults and data losses; and · Methods for monitoring the performance of low-level PID loops. The methodologies proposed employ nonlinear systems analysis, Lyapunov techniques, optimization, statistical methods and hybrid systems theory and are predicated upon the idea of integrating fault-detection, local feedback control, and supervisory control. The applicability and performance of the methods are demonstrated through a number of chemical process examples. Fault-Tolerant Process Control is a valuable resource for academic researchers, industrial practitioners as well as graduate students pursuing research in this area.
Fault-tolerant Control Systems
Author: Hassan Noura
Publisher: Springer Science & Business Media
ISBN: 1848826532
Category : Technology & Engineering
Languages : en
Pages : 233
Book Description
The seriesAdvancesinIndustrialControl aims to report and encourage te- nologytransfer in controlengineering. The rapid development of controlte- nology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies. . . , new challenges. Much of this devel- ment work resides in industrial reports, feasibility study papers, and the - ports of advanced collaborative projects. The series o?ers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Control system design and technology continues to develop in many d- ferent directions. One theme that the Advances in Industrial Control series is following is the application of nonlinear control design methods, and the series has some interesting new commissions in progress. However, another theme of interest is how to endow the industrial controller with the ability to overcome faults and process degradation. Fault detection and isolation is a broad ?eld with a research literature spanning several decades. This topic deals with three questions: • How is the presence of a fault detected? • What is the cause of the fault? • Where is it located? However, there has been less focus on the question of how to use the control system to accommodate and overcome the performance deterioration caused by the identi?ed sensor or actuator fault.
Publisher: Springer Science & Business Media
ISBN: 1848826532
Category : Technology & Engineering
Languages : en
Pages : 233
Book Description
The seriesAdvancesinIndustrialControl aims to report and encourage te- nologytransfer in controlengineering. The rapid development of controlte- nology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies. . . , new challenges. Much of this devel- ment work resides in industrial reports, feasibility study papers, and the - ports of advanced collaborative projects. The series o?ers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Control system design and technology continues to develop in many d- ferent directions. One theme that the Advances in Industrial Control series is following is the application of nonlinear control design methods, and the series has some interesting new commissions in progress. However, another theme of interest is how to endow the industrial controller with the ability to overcome faults and process degradation. Fault detection and isolation is a broad ?eld with a research literature spanning several decades. This topic deals with three questions: • How is the presence of a fault detected? • What is the cause of the fault? • Where is it located? However, there has been less focus on the question of how to use the control system to accommodate and overcome the performance deterioration caused by the identi?ed sensor or actuator fault.
Diagnosis and Fault-Tolerant Control
Author: Mogens Blanke
Publisher: Springer Science & Business Media
ISBN: 3540356533
Category : Science
Languages : en
Pages : 685
Book Description
This book presents model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, test fault detectability and reveal redundancies that can be used to ensure fault tolerance. Case studies demonstrate the methods presented. The second edition includes new material on reconfigurable control, diagnosis of nonlinear systems, and remote diagnosis, plus new examples and updated bibliography.
Publisher: Springer Science & Business Media
ISBN: 3540356533
Category : Science
Languages : en
Pages : 685
Book Description
This book presents model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, test fault detectability and reveal redundancies that can be used to ensure fault tolerance. Case studies demonstrate the methods presented. The second edition includes new material on reconfigurable control, diagnosis of nonlinear systems, and remote diagnosis, plus new examples and updated bibliography.
Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems
Author: Steven X. Ding
Publisher: Springer Science & Business Media
ISBN: 1447164105
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems presents basic statistical process monitoring, fault diagnosis, and control methods and introduces advanced data-driven schemes for the design of fault diagnosis and fault-tolerant control systems catering to the needs of dynamic industrial processes. With ever increasing demands for reliability, availability and safety in technical processes and assets, process monitoring and fault-tolerance have become important issues surrounding the design of automatic control systems. This text shows the reader how, thanks to the rapid development of information technology, key techniques of data-driven and statistical process monitoring and control can now become widely used in industrial practice to address these issues. To allow for self-contained study and facilitate implementation in real applications, important mathematical and control theoretical knowledge and tools are included in this book. Major schemes are presented in algorithm form and demonstrated on industrial case systems. Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems will be of interest to process and control engineers, engineering students and researchers with a control engineering background.
Publisher: Springer Science & Business Media
ISBN: 1447164105
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems presents basic statistical process monitoring, fault diagnosis, and control methods and introduces advanced data-driven schemes for the design of fault diagnosis and fault-tolerant control systems catering to the needs of dynamic industrial processes. With ever increasing demands for reliability, availability and safety in technical processes and assets, process monitoring and fault-tolerance have become important issues surrounding the design of automatic control systems. This text shows the reader how, thanks to the rapid development of information technology, key techniques of data-driven and statistical process monitoring and control can now become widely used in industrial practice to address these issues. To allow for self-contained study and facilitate implementation in real applications, important mathematical and control theoretical knowledge and tools are included in this book. Major schemes are presented in algorithm form and demonstrated on industrial case systems. Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems will be of interest to process and control engineers, engineering students and researchers with a control engineering background.
Fault-Tolerant Real-Time Systems
Author: Stefan Poledna
Publisher: Springer Science & Business Media
ISBN: 0585295808
Category : Computers
Languages : en
Pages : 161
Book Description
Real-time computer systems are very often subject to dependability requirements because of their application areas. Fly-by-wire airplane control systems, control of power plants, industrial process control systems and others are required to continue their function despite faults. Fault-tolerance and real-time requirements thus constitute a kind of natural combination in process control applications. Systematic fault-tolerance is based on redundancy, which is used to mask failures of individual components. The problem of replica determinism is thereby to ensure that replicated components show consistent behavior in the absence of faults. It might seem trivial that, given an identical sequence of inputs, replicated computer systems will produce consistent outputs. Unfortunately, this is not the case. The problem of replica non-determinism and the presentation of its possible solutions is the subject of Fault-Tolerant Real-Time Systems: The Problem of Replica Determinism. The field of automotive electronics is an important application area of fault-tolerant real-time systems. Systems like anti-lock braking, engine control, active suspension or vehicle dynamics control have demanding real-time and fault-tolerance requirements. These requirements have to be met even in the presence of very limited resources since cost is extremely important. Because of its interesting properties Fault-Tolerant Real-Time Systems gives an introduction to the application area of automotive electronics. The requirements of automotive electronics are a topic of discussion in the remainder of this work and are used as a benchmark to evaluate solutions to the problem of replica determinism.
Publisher: Springer Science & Business Media
ISBN: 0585295808
Category : Computers
Languages : en
Pages : 161
Book Description
Real-time computer systems are very often subject to dependability requirements because of their application areas. Fly-by-wire airplane control systems, control of power plants, industrial process control systems and others are required to continue their function despite faults. Fault-tolerance and real-time requirements thus constitute a kind of natural combination in process control applications. Systematic fault-tolerance is based on redundancy, which is used to mask failures of individual components. The problem of replica determinism is thereby to ensure that replicated components show consistent behavior in the absence of faults. It might seem trivial that, given an identical sequence of inputs, replicated computer systems will produce consistent outputs. Unfortunately, this is not the case. The problem of replica non-determinism and the presentation of its possible solutions is the subject of Fault-Tolerant Real-Time Systems: The Problem of Replica Determinism. The field of automotive electronics is an important application area of fault-tolerant real-time systems. Systems like anti-lock braking, engine control, active suspension or vehicle dynamics control have demanding real-time and fault-tolerance requirements. These requirements have to be met even in the presence of very limited resources since cost is extremely important. Because of its interesting properties Fault-Tolerant Real-Time Systems gives an introduction to the application area of automotive electronics. The requirements of automotive electronics are a topic of discussion in the remainder of this work and are used as a benchmark to evaluate solutions to the problem of replica determinism.
Advanced methods for fault diagnosis and fault-tolerant control
Author: Steven X. Ding
Publisher: Springer Nature
ISBN: 3662620049
Category : Technology & Engineering
Languages : en
Pages : 664
Book Description
The major objective of this book is to introduce advanced design and (online) optimization methods for fault diagnosis and fault-tolerant control from different aspects. Under the aspect of system types, fault diagnosis and fault-tolerant issues are dealt with for linear time-invariant and time-varying systems as well as for nonlinear and distributed (including networked) systems. From the methodological point of view, both model-based and data-driven schemes are investigated.To allow for a self-contained study and enable an easy implementation in real applications, the necessary knowledge as well as tools in mathematics and control theory are included in this book. The main results with the fault diagnosis and fault-tolerant schemes are presented in form of algorithms and demonstrated by means of benchmark case studies. The intended audience of this book are process and control engineers, engineering students and researchers with control engineering background.
Publisher: Springer Nature
ISBN: 3662620049
Category : Technology & Engineering
Languages : en
Pages : 664
Book Description
The major objective of this book is to introduce advanced design and (online) optimization methods for fault diagnosis and fault-tolerant control from different aspects. Under the aspect of system types, fault diagnosis and fault-tolerant issues are dealt with for linear time-invariant and time-varying systems as well as for nonlinear and distributed (including networked) systems. From the methodological point of view, both model-based and data-driven schemes are investigated.To allow for a self-contained study and enable an easy implementation in real applications, the necessary knowledge as well as tools in mathematics and control theory are included in this book. The main results with the fault diagnosis and fault-tolerant schemes are presented in form of algorithms and demonstrated by means of benchmark case studies. The intended audience of this book are process and control engineers, engineering students and researchers with control engineering background.
Fault Tolerant Control Schemes Using Integral Sliding Modes
Author: Mirza Tariq Hamayun
Publisher: Springer
ISBN: 3319322389
Category : Technology & Engineering
Languages : en
Pages : 208
Book Description
The key attribute of a Fault Tolerant Control (FTC) system is its ability to maintain overall system stability and acceptable performance in the face of faults and failures within the feedback system. In this book Integral Sliding Mode (ISM) Control Allocation (CA) schemes for FTC are described, which have the potential to maintain close to nominal fault-free performance (for the entire system response), in the face of actuator faults and even complete failures of certain actuators. Broadly an ISM controller based around a model of the plant with the aim of creating a nonlinear fault tolerant feedback controller whose closed-loop performance is established during the design process. The second approach involves retro-fitting an ISM scheme to an existing feedback controller to introduce fault tolerance. This may be advantageous from an industrial perspective, because fault tolerance can be introduced without changing the existing control loops. A high fidelity benchmark model of a large transport aircraft is used to demonstrate the efficacy of the FTC schemes. In particular a scheme based on an LPV representation has been implemented and tested on a motion flight simulator.
Publisher: Springer
ISBN: 3319322389
Category : Technology & Engineering
Languages : en
Pages : 208
Book Description
The key attribute of a Fault Tolerant Control (FTC) system is its ability to maintain overall system stability and acceptable performance in the face of faults and failures within the feedback system. In this book Integral Sliding Mode (ISM) Control Allocation (CA) schemes for FTC are described, which have the potential to maintain close to nominal fault-free performance (for the entire system response), in the face of actuator faults and even complete failures of certain actuators. Broadly an ISM controller based around a model of the plant with the aim of creating a nonlinear fault tolerant feedback controller whose closed-loop performance is established during the design process. The second approach involves retro-fitting an ISM scheme to an existing feedback controller to introduce fault tolerance. This may be advantageous from an industrial perspective, because fault tolerance can be introduced without changing the existing control loops. A high fidelity benchmark model of a large transport aircraft is used to demonstrate the efficacy of the FTC schemes. In particular a scheme based on an LPV representation has been implemented and tested on a motion flight simulator.
Fault Detection and Fault-Tolerant Control for Nonlinear Systems
Author: Linlin Li
Publisher: Springer
ISBN: 3658130202
Category : Technology & Engineering
Languages : en
Pages : 192
Book Description
Linlin Li addresses the analysis and design issues of observer-based FD and FTC for nonlinear systems. The author analyses the existence conditions for the nonlinear observer-based FD systems to gain a deeper insight into the construction of FD systems. Aided by the T-S fuzzy technique, she recommends different design schemes, among them the L_inf/L_2 type of FD systems. The derived FD and FTC approaches are verified by two benchmark processes.
Publisher: Springer
ISBN: 3658130202
Category : Technology & Engineering
Languages : en
Pages : 192
Book Description
Linlin Li addresses the analysis and design issues of observer-based FD and FTC for nonlinear systems. The author analyses the existence conditions for the nonlinear observer-based FD systems to gain a deeper insight into the construction of FD systems. Aided by the T-S fuzzy technique, she recommends different design schemes, among them the L_inf/L_2 type of FD systems. The derived FD and FTC approaches are verified by two benchmark processes.
Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace Vehicles
Author: Ali Zolghadri
Publisher: Springer Science & Business Media
ISBN: 1447153138
Category : Technology & Engineering
Languages : en
Pages : 227
Book Description
Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace demonstrates the attractive potential of recent developments in control for resolving such issues as flight performance, self protection and extended-life structures. Importantly, the text deals with a number of practically significant considerations: tuning, complexity of design, real-time capability, evaluation of worst-case performance, robustness in harsh environments, and extensibility when development or adaptation is required. Coverage of such issues helps to draw the advanced concepts arising from academic research back towards the technological concerns of industry. Initial coverage of basic definitions and ideas and a literature review gives way to a treatment of electrical flight control system failures: oscillatory failure, runaway, and jamming. Advanced fault detection and diagnosis for linear and linear-parameter-varying systems are described. Lastly recovery strategies appropriate to remaining actuator/sensor/communications resources are developed. The authors exploit experience gained in research collaboration with academic and major industrial partners to validate advanced fault diagnosis and fault-tolerant control techniques with realistic benchmarks or real-world aeronautical and space systems. Consequently, the results presented in Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace, will be of interest in both academic and aerospatial-industrial milieux.
Publisher: Springer Science & Business Media
ISBN: 1447153138
Category : Technology & Engineering
Languages : en
Pages : 227
Book Description
Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace demonstrates the attractive potential of recent developments in control for resolving such issues as flight performance, self protection and extended-life structures. Importantly, the text deals with a number of practically significant considerations: tuning, complexity of design, real-time capability, evaluation of worst-case performance, robustness in harsh environments, and extensibility when development or adaptation is required. Coverage of such issues helps to draw the advanced concepts arising from academic research back towards the technological concerns of industry. Initial coverage of basic definitions and ideas and a literature review gives way to a treatment of electrical flight control system failures: oscillatory failure, runaway, and jamming. Advanced fault detection and diagnosis for linear and linear-parameter-varying systems are described. Lastly recovery strategies appropriate to remaining actuator/sensor/communications resources are developed. The authors exploit experience gained in research collaboration with academic and major industrial partners to validate advanced fault diagnosis and fault-tolerant control techniques with realistic benchmarks or real-world aeronautical and space systems. Consequently, the results presented in Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace, will be of interest in both academic and aerospatial-industrial milieux.
Fault Detection and Fault-Tolerant Control Using Sliding Modes
Author: Halim Alwi
Publisher: Springer Science & Business Media
ISBN: 0857296507
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
Fault Detection and Fault-tolerant Control Using Sliding Modes is the first text dedicated to showing the latest developments in the use of sliding-mode concepts for fault detection and isolation (FDI) and fault-tolerant control in dynamical engineering systems. It begins with an introduction to the basic concepts of sliding modes to provide a background to the field. This is followed by chapters that describe the use and design of sliding-mode observers for FDI using robust fault reconstruction. The development of a class of sliding-mode observers is described from first principles through to the latest schemes that circumvent minimum-phase and relative-degree conditions. Recent developments have shown that the field of fault tolerant control is a natural application of the well-known robustness properties of sliding-mode control. A family of sliding-mode control designs incorporating control allocation, which can deal with actuator failures directly by exploiting redundancy, is presented. Various realistic case studies, specifically highlighting aircraft systems and including results from the implementation of these designs on a motion flight simulator, are described. A reference and guide for researchers in fault detection and fault-tolerant control, this book will also be of interest to graduate students working with nonlinear systems and with sliding modes in particular. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
Publisher: Springer Science & Business Media
ISBN: 0857296507
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
Fault Detection and Fault-tolerant Control Using Sliding Modes is the first text dedicated to showing the latest developments in the use of sliding-mode concepts for fault detection and isolation (FDI) and fault-tolerant control in dynamical engineering systems. It begins with an introduction to the basic concepts of sliding modes to provide a background to the field. This is followed by chapters that describe the use and design of sliding-mode observers for FDI using robust fault reconstruction. The development of a class of sliding-mode observers is described from first principles through to the latest schemes that circumvent minimum-phase and relative-degree conditions. Recent developments have shown that the field of fault tolerant control is a natural application of the well-known robustness properties of sliding-mode control. A family of sliding-mode control designs incorporating control allocation, which can deal with actuator failures directly by exploiting redundancy, is presented. Various realistic case studies, specifically highlighting aircraft systems and including results from the implementation of these designs on a motion flight simulator, are described. A reference and guide for researchers in fault detection and fault-tolerant control, this book will also be of interest to graduate students working with nonlinear systems and with sliding modes in particular. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.