Author: János Kollár
Publisher: Cambridge University Press
ISBN: 1009346105
Category : Mathematics
Languages : en
Pages : 491
Book Description
The first complete treatment of the moduli theory of varieties of general type, laying foundations for future research.
Families of Varieties of General Type
Author: János Kollár
Publisher: Cambridge University Press
ISBN: 1009346105
Category : Mathematics
Languages : en
Pages : 491
Book Description
The first complete treatment of the moduli theory of varieties of general type, laying foundations for future research.
Publisher: Cambridge University Press
ISBN: 1009346105
Category : Mathematics
Languages : en
Pages : 491
Book Description
The first complete treatment of the moduli theory of varieties of general type, laying foundations for future research.
Algebraic Geometry: Salt Lake City 2015
Author: Tommaso de Fernex
Publisher: American Mathematical Soc.
ISBN: 1470435772
Category : Mathematics
Languages : en
Pages : 674
Book Description
This is Part 1 of a two-volume set. Since Oscar Zariski organized a meeting in 1954, there has been a major algebraic geometry meeting every decade: Woods Hole (1964), Arcata (1974), Bowdoin (1985), Santa Cruz (1995), and Seattle (2005). The American Mathematical Society has supported these summer institutes for over 50 years. Their proceedings volumes have been extremely influential, summarizing the state of algebraic geometry at the time and pointing to future developments. The most recent Summer Institute in Algebraic Geometry was held July 2015 at the University of Utah in Salt Lake City, sponsored by the AMS with the collaboration of the Clay Mathematics Institute. This volume includes surveys growing out of plenary lectures and seminar talks during the meeting. Some present a broad overview of their topics, while others develop a distinctive perspective on an emerging topic. Topics span both complex algebraic geometry and arithmetic questions, specifically, analytic techniques, enumerative geometry, moduli theory, derived categories, birational geometry, tropical geometry, Diophantine questions, geometric representation theory, characteristic and -adic tools, etc. The resulting articles will be important references in these areas for years to come.
Publisher: American Mathematical Soc.
ISBN: 1470435772
Category : Mathematics
Languages : en
Pages : 674
Book Description
This is Part 1 of a two-volume set. Since Oscar Zariski organized a meeting in 1954, there has been a major algebraic geometry meeting every decade: Woods Hole (1964), Arcata (1974), Bowdoin (1985), Santa Cruz (1995), and Seattle (2005). The American Mathematical Society has supported these summer institutes for over 50 years. Their proceedings volumes have been extremely influential, summarizing the state of algebraic geometry at the time and pointing to future developments. The most recent Summer Institute in Algebraic Geometry was held July 2015 at the University of Utah in Salt Lake City, sponsored by the AMS with the collaboration of the Clay Mathematics Institute. This volume includes surveys growing out of plenary lectures and seminar talks during the meeting. Some present a broad overview of their topics, while others develop a distinctive perspective on an emerging topic. Topics span both complex algebraic geometry and arithmetic questions, specifically, analytic techniques, enumerative geometry, moduli theory, derived categories, birational geometry, tropical geometry, Diophantine questions, geometric representation theory, characteristic and -adic tools, etc. The resulting articles will be important references in these areas for years to come.
Classification of Higher Dimensional Algebraic Varieties
Author: Christopher D. Hacon
Publisher: Springer Science & Business Media
ISBN: 3034602901
Category : Mathematics
Languages : en
Pages : 206
Book Description
Higher Dimensional Algebraic Geometry presents recent advances in the classification of complex projective varieties. Recent results in the minimal model program are discussed, and an introduction to the theory of moduli spaces is presented.
Publisher: Springer Science & Business Media
ISBN: 3034602901
Category : Mathematics
Languages : en
Pages : 206
Book Description
Higher Dimensional Algebraic Geometry presents recent advances in the classification of complex projective varieties. Recent results in the minimal model program are discussed, and an introduction to the theory of moduli spaces is presented.
Algebraic Geometry
Author: Dan Abramovich
Publisher: American Mathematical Soc.
ISBN: 0821847031
Category : Mathematics
Languages : en
Pages : 539
Book Description
Offers information on various technical tools, from jet schemes and derived categories to algebraic stacks. This book delves into the geometry of various moduli spaces, including those of stable curves, stable maps, coherent sheaves, and abelian varieties. It describes various advances in higher-dimensional bi rational geometry.
Publisher: American Mathematical Soc.
ISBN: 0821847031
Category : Mathematics
Languages : en
Pages : 539
Book Description
Offers information on various technical tools, from jet schemes and derived categories to algebraic stacks. This book delves into the geometry of various moduli spaces, including those of stable curves, stable maps, coherent sheaves, and abelian varieties. It describes various advances in higher-dimensional bi rational geometry.
Theory of Algebraic Surfaces
Author: Kunihiko Kodaira
Publisher: Springer Nature
ISBN: 9811573808
Category : Mathematics
Languages : en
Pages : 86
Book Description
This is an English translation of the book in Japanese, published as the volume 20 in the series of Seminar Notes from The University of Tokyo that grew out of a course of lectures by Professor Kunihiko Kodaira in 1967. It serves as an almost self-contained introduction to the theory of complex algebraic surfaces, including concise proofs of Gorenstein's theorem for curves on a surface and Noether's formula for the arithmetic genus. It also discusses the behavior of the pluri-canonical maps of surfaces of general type as a practical application of the general theory. The book is aimed at graduate students and also at anyone interested in algebraic surfaces, and readers are expected to have only a basic knowledge of complex manifolds as a prerequisite.
Publisher: Springer Nature
ISBN: 9811573808
Category : Mathematics
Languages : en
Pages : 86
Book Description
This is an English translation of the book in Japanese, published as the volume 20 in the series of Seminar Notes from The University of Tokyo that grew out of a course of lectures by Professor Kunihiko Kodaira in 1967. It serves as an almost self-contained introduction to the theory of complex algebraic surfaces, including concise proofs of Gorenstein's theorem for curves on a surface and Noether's formula for the arithmetic genus. It also discusses the behavior of the pluri-canonical maps of surfaces of general type as a practical application of the general theory. The book is aimed at graduate students and also at anyone interested in algebraic surfaces, and readers are expected to have only a basic knowledge of complex manifolds as a prerequisite.
Families of Varieties of General Type
Author: János Kollár
Publisher: Cambridge University Press
ISBN: 1009346148
Category : Mathematics
Languages : en
Pages : 492
Book Description
This book establishes the moduli theory of stable varieties, giving the optimal approach to understanding families of varieties of general type. Starting from the Deligne–Mumford theory of the moduli of curves and using Mori's program as a main tool, the book develops the techniques necessary for a theory in all dimensions. The main results give all the expected general properties, including a projective coarse moduli space. A wealth of previously unpublished material is also featured, including Chapter 5 on numerical flatness criteria, Chapter 7 on K-flatness, and Chapter 9 on hulls and husks.
Publisher: Cambridge University Press
ISBN: 1009346148
Category : Mathematics
Languages : en
Pages : 492
Book Description
This book establishes the moduli theory of stable varieties, giving the optimal approach to understanding families of varieties of general type. Starting from the Deligne–Mumford theory of the moduli of curves and using Mori's program as a main tool, the book develops the techniques necessary for a theory in all dimensions. The main results give all the expected general properties, including a projective coarse moduli space. A wealth of previously unpublished material is also featured, including Chapter 5 on numerical flatness criteria, Chapter 7 on K-flatness, and Chapter 9 on hulls and husks.
Recent Progress in Arithmetic and Algebraic Geometry
Author: Yasuyuki Kachi
Publisher: American Mathematical Soc.
ISBN: 0821834010
Category : Mathematics
Languages : en
Pages : 186
Book Description
This proceedings volume resulted from the John H. Barrett Memorial Lecture Series held at the University of Tennessee (Knoxville). The articles reflect recent developments in algebraic geometry. It is suitable for graduate students and researchers interested in algebra and algebraic geometry.
Publisher: American Mathematical Soc.
ISBN: 0821834010
Category : Mathematics
Languages : en
Pages : 186
Book Description
This proceedings volume resulted from the John H. Barrett Memorial Lecture Series held at the University of Tennessee (Knoxville). The articles reflect recent developments in algebraic geometry. It is suitable for graduate students and researchers interested in algebra and algebraic geometry.
Complex Analysis and Algebraic Geometry
Author: Kunihiko Kodaira
Publisher: CUP Archive
ISBN: 9780521217774
Category : Mathematics
Languages : en
Pages : 424
Book Description
The articles in this volume cover some developments in complex analysis and algebraic geometry. The book is divided into three parts. Part I includes topics in the theory of algebraic surfaces and analytic surface. Part II covers topics in moduli and classification problems, as well as structure theory of certain complex manifolds. Part III is devoted to various topics in algebraic geometry analysis and arithmetic. A survey article by Ueno serves as an introduction to the general background of the subject matter of the volume. The volume was written for Kunihiko Kodaira on the occasion of his sixtieth birthday, by his friends and students. Professor Kodaira was one of the world's leading mathematicians in algebraic geometry and complex manifold theory: and the contributions reflect those concerns.
Publisher: CUP Archive
ISBN: 9780521217774
Category : Mathematics
Languages : en
Pages : 424
Book Description
The articles in this volume cover some developments in complex analysis and algebraic geometry. The book is divided into three parts. Part I includes topics in the theory of algebraic surfaces and analytic surface. Part II covers topics in moduli and classification problems, as well as structure theory of certain complex manifolds. Part III is devoted to various topics in algebraic geometry analysis and arithmetic. A survey article by Ueno serves as an introduction to the general background of the subject matter of the volume. The volume was written for Kunihiko Kodaira on the occasion of his sixtieth birthday, by his friends and students. Professor Kodaira was one of the world's leading mathematicians in algebraic geometry and complex manifold theory: and the contributions reflect those concerns.
Birational Geometry of Algebraic Varieties
Author: Janos Kollár
Publisher: Cambridge University Press
ISBN: 9780521060226
Category : Mathematics
Languages : en
Pages : 264
Book Description
One of the major discoveries of the past two decades in algebraic geometry is the realization that the theory of minimal models of surfaces can be generalized to higher dimensional varieties. This generalization, called the minimal model program, or Mori's program, has developed into a powerful tool with applications to diverse questions in algebraic geometry and beyond. This book provides the first comprehensive introduction to the circle of ideas developed around the program, the prerequisites being only a basic knowledge of algebraic geometry. It will be of great interest to graduate students and researchers working in algebraic geometry and related fields.
Publisher: Cambridge University Press
ISBN: 9780521060226
Category : Mathematics
Languages : en
Pages : 264
Book Description
One of the major discoveries of the past two decades in algebraic geometry is the realization that the theory of minimal models of surfaces can be generalized to higher dimensional varieties. This generalization, called the minimal model program, or Mori's program, has developed into a powerful tool with applications to diverse questions in algebraic geometry and beyond. This book provides the first comprehensive introduction to the circle of ideas developed around the program, the prerequisites being only a basic knowledge of algebraic geometry. It will be of great interest to graduate students and researchers working in algebraic geometry and related fields.
Quasi-projective Moduli for Polarized Manifolds
Author: Eckart Viehweg
Publisher: Springer Science & Business Media
ISBN: 3642797458
Category : Mathematics
Languages : en
Pages : 329
Book Description
The concept of moduli goes back to B. Riemann, who shows in [68] that the isomorphism class of a Riemann surface of genus 9 ~ 2 depends on 3g - 3 parameters, which he proposes to name "moduli". A precise formulation of global moduli problems in algebraic geometry, the definition of moduli schemes or of algebraic moduli spaces for curves and for certain higher dimensional manifolds have only been given recently (A. Grothendieck, D. Mumford, see [59]), as well as solutions in some cases. It is the aim of this monograph to present methods which allow over a field of characteristic zero to construct certain moduli schemes together with an ample sheaf. Our main source of inspiration is D. Mumford's "Geometric In variant Theory". We will recall the necessary tools from his book [59] and prove the "Hilbert-Mumford Criterion" and some modified version for the stability of points under group actions. As in [78], a careful study of positivity proper ties of direct image sheaves allows to use this criterion to construct moduli as quasi-projective schemes for canonically polarized manifolds and for polarized manifolds with a semi-ample canonical sheaf.
Publisher: Springer Science & Business Media
ISBN: 3642797458
Category : Mathematics
Languages : en
Pages : 329
Book Description
The concept of moduli goes back to B. Riemann, who shows in [68] that the isomorphism class of a Riemann surface of genus 9 ~ 2 depends on 3g - 3 parameters, which he proposes to name "moduli". A precise formulation of global moduli problems in algebraic geometry, the definition of moduli schemes or of algebraic moduli spaces for curves and for certain higher dimensional manifolds have only been given recently (A. Grothendieck, D. Mumford, see [59]), as well as solutions in some cases. It is the aim of this monograph to present methods which allow over a field of characteristic zero to construct certain moduli schemes together with an ample sheaf. Our main source of inspiration is D. Mumford's "Geometric In variant Theory". We will recall the necessary tools from his book [59] and prove the "Hilbert-Mumford Criterion" and some modified version for the stability of points under group actions. As in [78], a careful study of positivity proper ties of direct image sheaves allows to use this criterion to construct moduli as quasi-projective schemes for canonically polarized manifolds and for polarized manifolds with a semi-ample canonical sheaf.