Author:
Publisher:
ISBN: 9781642954876
Category :
Languages : en
Pages : 142
Book Description
This special collection of SAS Global Forum papers demonstrates new and enhanced capabilities and applications of lesser-known SAS/STAT and SAS Viya procedures for regression models. The goal here is to raise awareness of current valuable SAS/STAT content of which the user may not be aware. Also available free as a PDF from sas.com/books.
Exploring Modern Regression Methods Using SAS
Author:
Publisher:
ISBN: 9781642954876
Category :
Languages : en
Pages : 142
Book Description
This special collection of SAS Global Forum papers demonstrates new and enhanced capabilities and applications of lesser-known SAS/STAT and SAS Viya procedures for regression models. The goal here is to raise awareness of current valuable SAS/STAT content of which the user may not be aware. Also available free as a PDF from sas.com/books.
Publisher:
ISBN: 9781642954876
Category :
Languages : en
Pages : 142
Book Description
This special collection of SAS Global Forum papers demonstrates new and enhanced capabilities and applications of lesser-known SAS/STAT and SAS Viya procedures for regression models. The goal here is to raise awareness of current valuable SAS/STAT content of which the user may not be aware. Also available free as a PDF from sas.com/books.
EXPLORING MODERN REGRESSION METHODS USING SAS
Author:
Publisher:
ISBN: 9781642954487
Category : Research
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781642954487
Category : Research
Languages : en
Pages :
Book Description
Exploring SAS Viya
Author: Sas Education
Publisher:
ISBN: 9781642955880
Category : Computers
Languages : en
Pages : 126
Book Description
SAS Visual Data Mining and Machine Learning, powered by SAS Viya, means that users of all skill levels can visually explore data on their own while drawing on powerful in-memory technologies for faster analytic computations and discoveries. You can manually program with custom code or use the features in SAS Studio, Model Studio, and SAS Visual Analytics to automate your data manipulation and modeling. These programs offer a flexible, easy-to-use, self-service environment that can scale on an enterprise-wide level. In this book, we will explore some of the many features of SAS Visual Data Mining and Machine Learning including: programming in the Python interface; new, advanced data mining and machine learning procedures; pipeline building in Model Studio, and model building and comparison in SAS Visual Analytics.
Publisher:
ISBN: 9781642955880
Category : Computers
Languages : en
Pages : 126
Book Description
SAS Visual Data Mining and Machine Learning, powered by SAS Viya, means that users of all skill levels can visually explore data on their own while drawing on powerful in-memory technologies for faster analytic computations and discoveries. You can manually program with custom code or use the features in SAS Studio, Model Studio, and SAS Visual Analytics to automate your data manipulation and modeling. These programs offer a flexible, easy-to-use, self-service environment that can scale on an enterprise-wide level. In this book, we will explore some of the many features of SAS Visual Data Mining and Machine Learning including: programming in the Python interface; new, advanced data mining and machine learning procedures; pipeline building in Model Studio, and model building and comparison in SAS Visual Analytics.
Exploring SAS Viya
Author: Sas Education
Publisher:
ISBN: 9781642954838
Category :
Languages : en
Pages : 80
Book Description
This first book in the series covers how to access data files, libraries, and existing code in SAS Studio. You also learn about new procedures in SAS Viya, how to write new code, and how to use some of the pre-installed tasks that come with SAS Visual Data Mining and Machine Learning. In the last chapter, you learn how to use the features in SAS Data Preparation to perform data management tasks using SAS Data Explorer, SAS Data Studio, and SAS Lineage Viewer. Also available free as a PDF from sas.com/books.
Publisher:
ISBN: 9781642954838
Category :
Languages : en
Pages : 80
Book Description
This first book in the series covers how to access data files, libraries, and existing code in SAS Studio. You also learn about new procedures in SAS Viya, how to write new code, and how to use some of the pre-installed tasks that come with SAS Visual Data Mining and Machine Learning. In the last chapter, you learn how to use the features in SAS Data Preparation to perform data management tasks using SAS Data Explorer, SAS Data Studio, and SAS Lineage Viewer. Also available free as a PDF from sas.com/books.
A Modern Approach to Regression with R
Author: Simon Sheather
Publisher: Springer Science & Business Media
ISBN: 0387096086
Category : Mathematics
Languages : en
Pages : 398
Book Description
This book focuses on tools and techniques for building regression models using real-world data and assessing their validity. A key theme throughout the book is that it makes sense to base inferences or conclusions only on valid models. Plots are shown to be an important tool for both building regression models and assessing their validity. We shall see that deciding what to plot and how each plot should be interpreted will be a major challenge. In order to overcome this challenge we shall need to understand the mathematical properties of the fitted regression models and associated diagnostic procedures. As such this will be an area of focus throughout the book. In particular, we shall carefully study the properties of resi- als in order to understand when patterns in residual plots provide direct information about model misspecification and when they do not. The regression output and plots that appear throughout the book have been gen- ated using R. The output from R that appears in this book has been edited in minor ways. On the book web site you will find the R code used in each example in the text.
Publisher: Springer Science & Business Media
ISBN: 0387096086
Category : Mathematics
Languages : en
Pages : 398
Book Description
This book focuses on tools and techniques for building regression models using real-world data and assessing their validity. A key theme throughout the book is that it makes sense to base inferences or conclusions only on valid models. Plots are shown to be an important tool for both building regression models and assessing their validity. We shall see that deciding what to plot and how each plot should be interpreted will be a major challenge. In order to overcome this challenge we shall need to understand the mathematical properties of the fitted regression models and associated diagnostic procedures. As such this will be an area of focus throughout the book. In particular, we shall carefully study the properties of resi- als in order to understand when patterns in residual plots provide direct information about model misspecification and when they do not. The regression output and plots that appear throughout the book have been gen- ated using R. The output from R that appears in this book has been edited in minor ways. On the book web site you will find the R code used in each example in the text.
Advanced Regression Models with SAS and R
Author: Olga Korosteleva
Publisher: CRC Press
ISBN: 1351690086
Category : Mathematics
Languages : en
Pages : 325
Book Description
Advanced Regression Models with SAS and R exposes the reader to the modern world of regression analysis. The material covered by this book consists of regression models that go beyond linear regression, including models for right-skewed, categorical and hierarchical observations. The book presents the theory as well as fully worked-out numerical examples with complete SAS and R codes for each regression. The emphasis is on model accuracy and the interpretation of results. For each regression, the fitted model is presented along with interpretation of estimated regression coefficients and prediction of response for given values of predictors. Features: Presents the theoretical framework for each regression. Discusses data that are categorical, count, proportions, right-skewed, longitudinal and hierarchical. Uses examples based on real-life consulting projects. Provides complete SAS and R codes for each example. Includes several exercises for every regression. Advanced Regression Models with SAS and R is designed as a text for an upper division undergraduate or a graduate course in regression analysis. Prior exposure to the two software packages is desired but not required. The Author: Olga Korosteleva is a Professor of Statistics at California State University, Long Beach. She teaches a large variety of statistical courses to undergraduate and master’s students. She has published three statistical textbooks. For a number of years, she has held the position of faculty director of the statistical consulting group. Her research interests lie mostly in applications of statistical methodology through collaboration with her clients in health sciences, nursing, kinesiology, and other fields.
Publisher: CRC Press
ISBN: 1351690086
Category : Mathematics
Languages : en
Pages : 325
Book Description
Advanced Regression Models with SAS and R exposes the reader to the modern world of regression analysis. The material covered by this book consists of regression models that go beyond linear regression, including models for right-skewed, categorical and hierarchical observations. The book presents the theory as well as fully worked-out numerical examples with complete SAS and R codes for each regression. The emphasis is on model accuracy and the interpretation of results. For each regression, the fitted model is presented along with interpretation of estimated regression coefficients and prediction of response for given values of predictors. Features: Presents the theoretical framework for each regression. Discusses data that are categorical, count, proportions, right-skewed, longitudinal and hierarchical. Uses examples based on real-life consulting projects. Provides complete SAS and R codes for each example. Includes several exercises for every regression. Advanced Regression Models with SAS and R is designed as a text for an upper division undergraduate or a graduate course in regression analysis. Prior exposure to the two software packages is desired but not required. The Author: Olga Korosteleva is a Professor of Statistics at California State University, Long Beach. She teaches a large variety of statistical courses to undergraduate and master’s students. She has published three statistical textbooks. For a number of years, she has held the position of faculty director of the statistical consulting group. Her research interests lie mostly in applications of statistical methodology through collaboration with her clients in health sciences, nursing, kinesiology, and other fields.
Discovering Statistics Using SAS
Author: Andy Field
Publisher: SAGE
ISBN: 1446242234
Category : Reference
Languages : en
Pages : 753
Book Description
Hot on the heels of the 3rd edition of Andy Field′s award-winning Discovering Statistics Using SPSS comes this brand new version for students using SAS®. Andy has teamed up with a co-author, Jeremy Miles, to adapt the book with all the most up-to-date commands and programming language from SAS® 9.2. If you′re using SAS®, this is the only book on statistics that you will need! The book provides a comprehensive collection of statistical methods, tests and procedures, covering everything you′re likely to need to know for your course, all presented in Andy′s accessible and humourous writing style. Suitable for those new to statistics as well as students on intermediate and more advanced courses, the book walks students through from basic to advanced level concepts, all the while reinforcing knowledge through the use of SAS®. A ′cast of characters′ supports the learning process throughout the book, from providing tips on how to enter data in SAS® properly to testing knowledge covered in chapters interactively, and ′real world′ and invented examples illustrate the concepts and make the techniques come alive. The book′s companion website (see link above) provides students with a wide range of invented and real published research datasets. Lecturers can find multiple choice questions and PowerPoint slides for each chapter to support their teaching.
Publisher: SAGE
ISBN: 1446242234
Category : Reference
Languages : en
Pages : 753
Book Description
Hot on the heels of the 3rd edition of Andy Field′s award-winning Discovering Statistics Using SPSS comes this brand new version for students using SAS®. Andy has teamed up with a co-author, Jeremy Miles, to adapt the book with all the most up-to-date commands and programming language from SAS® 9.2. If you′re using SAS®, this is the only book on statistics that you will need! The book provides a comprehensive collection of statistical methods, tests and procedures, covering everything you′re likely to need to know for your course, all presented in Andy′s accessible and humourous writing style. Suitable for those new to statistics as well as students on intermediate and more advanced courses, the book walks students through from basic to advanced level concepts, all the while reinforcing knowledge through the use of SAS®. A ′cast of characters′ supports the learning process throughout the book, from providing tips on how to enter data in SAS® properly to testing knowledge covered in chapters interactively, and ′real world′ and invented examples illustrate the concepts and make the techniques come alive. The book′s companion website (see link above) provides students with a wide range of invented and real published research datasets. Lecturers can find multiple choice questions and PowerPoint slides for each chapter to support their teaching.
Introduction to Statistical and Machine Learning Methods for Data Science
Author: Carlos Andre Reis Pinheiro
Publisher: SAS Institute
ISBN: 1953329624
Category : Computers
Languages : en
Pages : 169
Book Description
Boost your understanding of data science techniques to solve real-world problems Data science is an exciting, interdisciplinary field that extracts insights from data to solve business problems. This book introduces common data science techniques and methods and shows you how to apply them in real-world case studies. From data preparation and exploration to model assessment and deployment, this book describes every stage of the analytics life cycle, including a comprehensive overview of unsupervised and supervised machine learning techniques. The book guides you through the necessary steps to pick the best techniques and models and then implement those models to successfully address the original business need. No software is shown in the book, and mathematical details are kept to a minimum. This allows you to develop an understanding of the fundamentals of data science, no matter what background or experience level you have.
Publisher: SAS Institute
ISBN: 1953329624
Category : Computers
Languages : en
Pages : 169
Book Description
Boost your understanding of data science techniques to solve real-world problems Data science is an exciting, interdisciplinary field that extracts insights from data to solve business problems. This book introduces common data science techniques and methods and shows you how to apply them in real-world case studies. From data preparation and exploration to model assessment and deployment, this book describes every stage of the analytics life cycle, including a comprehensive overview of unsupervised and supervised machine learning techniques. The book guides you through the necessary steps to pick the best techniques and models and then implement those models to successfully address the original business need. No software is shown in the book, and mathematical details are kept to a minimum. This allows you to develop an understanding of the fundamentals of data science, no matter what background or experience level you have.
Exploring SAS Viya
Author: Sas Education
Publisher:
ISBN: 9781642954906
Category :
Languages : en
Pages : 110
Book Description
Data visualization enables decision makers to see analytics presented visually so that they can grasp difficult concepts or identify new patterns. SAS offers several solutions for visualizing your data, many of which are powered by SAS Viya. This book includes four visualization solutions powered by SAS Viya: SAS Visual Analytics, SAS Visual Statistics, SAS Visual Text Analytics, and SAS Visual Investigator. SAS visualization software is designed for anyone in your organization who wants to use and derive insights from data-from influencers, decision makers, and analysts to statisticians and data scientists. Also available as a free e-book from sas.com/books.
Publisher:
ISBN: 9781642954906
Category :
Languages : en
Pages : 110
Book Description
Data visualization enables decision makers to see analytics presented visually so that they can grasp difficult concepts or identify new patterns. SAS offers several solutions for visualizing your data, many of which are powered by SAS Viya. This book includes four visualization solutions powered by SAS Viya: SAS Visual Analytics, SAS Visual Statistics, SAS Visual Text Analytics, and SAS Visual Investigator. SAS visualization software is designed for anyone in your organization who wants to use and derive insights from data-from influencers, decision makers, and analysts to statisticians and data scientists. Also available as a free e-book from sas.com/books.
Building Better Models with JMP Pro
Author: Jim Grayson
Publisher: SAS Institute
ISBN: 1629599565
Category : Computers
Languages : en
Pages : 375
Book Description
Building Better Models with JMP® Pro provides an example-based introduction to business analytics, with a proven process that guides you in the application of modeling tools and concepts. It gives you the "what, why, and how" of using JMP® Pro for building and applying analytic models. This book is designed for business analysts, managers, and practitioners who may not have a solid statistical background, but need to be able to readily apply analytic methods to solve business problems. In addition, this book will greatly benefit faculty members who teach any of the following subjects at the lower to upper graduate level: predictive modeling, data mining, and business analytics. Novice to advanced users in business statistics, business analytics, and predictive modeling will find that it provides a peek inside the black box of algorithms and the methods used. Topics include: regression, logistic regression, classification and regression trees, neural networks, model cross-validation, model comparison and selection, and data reduction techniques. Full of rich examples, Building Better Models with JMP Pro is an applied book on business analytics and modeling that introduces a simple methodology for managing and executing analytics projects. No prior experience with JMP is needed. Make more informed decisions from your data using this newest JMP book.
Publisher: SAS Institute
ISBN: 1629599565
Category : Computers
Languages : en
Pages : 375
Book Description
Building Better Models with JMP® Pro provides an example-based introduction to business analytics, with a proven process that guides you in the application of modeling tools and concepts. It gives you the "what, why, and how" of using JMP® Pro for building and applying analytic models. This book is designed for business analysts, managers, and practitioners who may not have a solid statistical background, but need to be able to readily apply analytic methods to solve business problems. In addition, this book will greatly benefit faculty members who teach any of the following subjects at the lower to upper graduate level: predictive modeling, data mining, and business analytics. Novice to advanced users in business statistics, business analytics, and predictive modeling will find that it provides a peek inside the black box of algorithms and the methods used. Topics include: regression, logistic regression, classification and regression trees, neural networks, model cross-validation, model comparison and selection, and data reduction techniques. Full of rich examples, Building Better Models with JMP Pro is an applied book on business analytics and modeling that introduces a simple methodology for managing and executing analytics projects. No prior experience with JMP is needed. Make more informed decisions from your data using this newest JMP book.