Explorations in Topology

Explorations in Topology PDF Author: David Gay
Publisher: Elsevier
ISBN: 0124166407
Category : Mathematics
Languages : en
Pages : 332

Get Book Here

Book Description
Explorations in Topology, Second Edition, provides students a rich experience with low-dimensional topology (map coloring, surfaces, and knots), enhances their geometrical and topological intuition, empowers them with new approaches to solving problems, and provides them with experiences that will help them make sense of future, more formal topology courses. The book's innovative story-line style models the problem-solving process, presents the development of concepts in a natural way, and engages students in meaningful encounters with the material. The updated end-of-chapter investigations provide opportunities to work on many open-ended, non-routine problems and, through a modified "Moore method," to make conjectures from which theorems emerge. The revised end-of-chapter notes provide historical background to the chapter's ideas, introduce standard terminology, and make connections with mainstream mathematics. The final chapter of projects provides ideas for continued research. Explorations in Topology, Second Edition, enhances upper division courses and is a valuable reference for all levels of students and researchers working in topology. - Students begin to solve substantial problems from the start - Ideas unfold through the context of a storyline, and students become actively involved - The text models the problem-solving process, presents the development of concepts in a natural way, and helps the reader engage with the material

Explorations in Topology

Explorations in Topology PDF Author: David Gay
Publisher: Elsevier
ISBN: 0124166407
Category : Mathematics
Languages : en
Pages : 332

Get Book Here

Book Description
Explorations in Topology, Second Edition, provides students a rich experience with low-dimensional topology (map coloring, surfaces, and knots), enhances their geometrical and topological intuition, empowers them with new approaches to solving problems, and provides them with experiences that will help them make sense of future, more formal topology courses. The book's innovative story-line style models the problem-solving process, presents the development of concepts in a natural way, and engages students in meaningful encounters with the material. The updated end-of-chapter investigations provide opportunities to work on many open-ended, non-routine problems and, through a modified "Moore method," to make conjectures from which theorems emerge. The revised end-of-chapter notes provide historical background to the chapter's ideas, introduce standard terminology, and make connections with mainstream mathematics. The final chapter of projects provides ideas for continued research. Explorations in Topology, Second Edition, enhances upper division courses and is a valuable reference for all levels of students and researchers working in topology. - Students begin to solve substantial problems from the start - Ideas unfold through the context of a storyline, and students become actively involved - The text models the problem-solving process, presents the development of concepts in a natural way, and helps the reader engage with the material

Topology for Analysis

Topology for Analysis PDF Author: Albert Wilansky
Publisher: Courier Corporation
ISBN: 0486469034
Category : Mathematics
Languages : en
Pages : 399

Get Book Here

Book Description
Starting with the first principles of topology, this volume advances to general analysis. Three levels of examples and problems make it appropriate for students and professionals. Abundant exercises, ordered and numbered by degree of difficulty, illustrate important concepts, and a 40-page appendix includes tables of theorems and counterexamples. 1970 edition.

Heidegger and the Thinking of Place

Heidegger and the Thinking of Place PDF Author: Jeff Malpas
Publisher: MIT Press
ISBN: 0262533677
Category : Philosophy
Languages : en
Pages : 389

Get Book Here

Book Description
The philosophical significance of place—in Heidegger's work and as the focus of a distinctive mode of philosophical thinking. The idea of place—topos—runs through Martin Heidegger's thinking almost from the very start. It can be seen not only in his attachment to the famous hut in Todtnauberg but in his constant deployment of topological terms and images and in the situated, “placed” character of his thought and of its major themes and motifs. Heidegger's work, argues Jeff Malpas, exemplifies the practice of “philosophical topology.” In Heidegger and the Thinking of Place, Malpas examines the topological aspects of Heidegger's thought and offers a broader elaboration of the philosophical significance of place. Doing so, he provides a distinct and productive approach to Heidegger as well as a new reading of other key figures—notably Kant, Aristotle, Gadamer, and Davidson, but also Benjamin, Arendt, and Camus. Malpas, expanding arguments he made in his earlier book Heidegger's Topology (MIT Press, 2007), discusses such topics as the role of place in philosophical thinking, the topological character of the transcendental, the convergence of Heideggerian topology with Davidsonian triangulation, the necessity of mortality in the possibility of human life, the role of materiality in the working of art, the significance of nostalgia, and the nature of philosophy as beginning in wonder. Philosophy, Malpas argues, begins in wonder and begins in place and the experience of place. The place of wonder, of philosophy, of questioning, he writes, is the very topos of thinking.

Differential Topology

Differential Topology PDF Author: Victor Guillemin
Publisher: American Mathematical Soc.
ISBN: 0821851934
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within. The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying idea--transversality--the authors are able to avoid the use of big machinery or ad hoc techniques to establish the main results. In this way, they present intelligent treatments of important theorems, such as the Lefschetz fixed-point theorem, the Poincaré-Hopf index theorem, and Stokes theorem. The book has a wealth of exercises of various types. Some are routine explorations of the main material. In others, the students are guided step-by-step through proofs of fundamental results, such as the Jordan-Brouwer separation theorem. An exercise section in Chapter 4 leads the student through a construction of de Rham cohomology and a proof of its homotopy invariance. The book is suitable for either an introductory graduate course or an advanced undergraduate course.

Nonlinear Potential Theory of Degenerate Elliptic Equations

Nonlinear Potential Theory of Degenerate Elliptic Equations PDF Author: Juha Heinonen
Publisher: Courier Dover Publications
ISBN: 0486830462
Category : Mathematics
Languages : en
Pages : 417

Get Book Here

Book Description
A self-contained treatment appropriate for advanced undergraduates and graduate students, this text offers a detailed development of the necessary background for its survey of the nonlinear potential theory of superharmonic functions. 1993 edition.

Explorations in Mathematical Physics

Explorations in Mathematical Physics PDF Author: Don Koks
Publisher: Springer Science & Business Media
ISBN: 0387309438
Category : Science
Languages : en
Pages : 549

Get Book Here

Book Description
Have you ever wondered why the language of modern physics centres on geometry? Or how quantum operators and Dirac brackets work? What a convolution really is? What tensors are all about? Or what field theory and lagrangians are, and why gravity is described as curvature? This book takes you on a tour of the main ideas forming the language of modern mathematical physics. Here you will meet novel approaches to concepts such as determinants and geometry, wave function evolution, statistics, signal processing, and three-dimensional rotations. You will see how the accelerated frames of special relativity tell us about gravity. On the journey, you will discover how tensor notation relates to vector calculus, how differential geometry is built on intuitive concepts, and how variational calculus leads to field theory. You will meet quantum measurement theory, along with Green functions and the art of complex integration, and finally general relativity and cosmology. The book takes a fresh approach to tensor analysis built solely on the metric and vectors, with no need for one-forms. This gives a much more geometrical and intuitive insight into vector and tensor calculus, together with general relativity, than do traditional, more abstract methods. Don Koks is a physicist at the Defence Science and Technology Organisation in Adelaide, Australia. His doctorate in quantum cosmology was obtained from the Department of Physics and Mathematical Physics at Adelaide University. Prior work at the University of Auckland specialised in applied accelerator physics, along with pure and applied mathematics.

Heidegger's Topology

Heidegger's Topology PDF Author: Jeff Malpas
Publisher: MIT Press
ISBN: 0262250330
Category : Philosophy
Languages : en
Pages : 425

Get Book Here

Book Description
This groundbreaking inquiry into the centrality of place in Martin Heidegger's thinking offers not only an illuminating reading of Heidegger's thought but a detailed investigation into the way in which the concept of place relates to core philosophical issues. In Heidegger's Topology, Jeff Malpas argues that an engagement with place, explicit in Heidegger's later work, informs Heidegger's thought as a whole. What guides Heidegger's thinking, Malpas writes, is a conception of philosophy's starting point: our finding ourselves already "there," situated in the world, in "place". Heidegger's concepts of being and place, he argues, are inextricably bound together. Malpas follows the development of Heidegger's topology through three stages: the early period of the 1910s and 1920s, through Being and Time, centered on the "meaning of being"; the middle period of the 1930s into the 1940s, centered on the "truth of being"; and the late period from the mid-1940s on, when the "place of being" comes to the fore. (Malpas also challenges the widely repeated arguments that link Heidegger's notions of place and belonging to his entanglement with Nazism.) The significance of Heidegger as a thinker of place, Malpas claims, lies not only in Heidegger's own investigations but also in the way that spatial and topographic thinking has flowed from Heidegger's work into that of other key thinkers of the past 60 years.

Outer Circles

Outer Circles PDF Author: A. Marden
Publisher: Cambridge University Press
ISBN: 1139463764
Category : Mathematics
Languages : en
Pages : 393

Get Book Here

Book Description
We live in a three-dimensional space; what sort of space is it? Can we build it from simple geometric objects? The answers to such questions have been found in the last 30 years, and Outer Circles describes the basic mathematics needed for those answers as well as making clear the grand design of the subject of hyperbolic manifolds as a whole. The purpose of Outer Circles is to provide an account of the contemporary theory, accessible to those with minimal formal background in topology, hyperbolic geometry, and complex analysis. The text explains what is needed, and provides the expertise to use the primary tools to arrive at a thorough understanding of the big picture. This picture is further filled out by numerous exercises and expositions at the ends of the chapters and is complemented by a profusion of high quality illustrations. There is an extensive bibliography for further study.

Introduction to Topology

Introduction to Topology PDF Author: Theodore W. Gamelin
Publisher: Courier Corporation
ISBN: 0486320189
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
This text explains nontrivial applications of metric space topology to analysis. Covers metric space, point-set topology, and algebraic topology. Includes exercises, selected answers, and 51 illustrations. 1983 edition.

Methods of the Theory of Functions of Many Complex Variables

Methods of the Theory of Functions of Many Complex Variables PDF Author: Vasiliy Sergeyevich Vladimirov
Publisher: Courier Corporation
ISBN: 0486458121
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description
This systematic exposition outlines the fundamentals of the theory of single sheeted domains of holomorphy. It further illustrates applications to quantum field theory, the theory of functions, and differential equations with constant coefficients. Students of quantum field theory will find this text of particular value. The text begins with an introduction that defines the basic concepts and elementary propositions, along with the more salient facts from the theory of functions of real variables and the theory of generalized functions. Subsequent chapters address the theory of plurisubharmonic functions and pseudoconvex domains, along with characteristics of domains of holomorphy. These explorations are further examined in terms of four types of domains: multiple-circular, tubular, semitubular, and Hartogs' domains. Surveys of integral representations focus on the Martinelli-Bochner, Bergman-Weil, and Bochner representations. The final chapter is devoted to applications, particularly those involved in field theory. It employs the theory of generalized functions, along with the theory of functions of several complex variables.