Explicit Filtering in Large Eddy Simulation Using a Discontinuous Galerkin Method

Explicit Filtering in Large Eddy Simulation Using a Discontinuous Galerkin Method PDF Author: Matthew J. Brazell
Publisher:
ISBN: 9781339441535
Category : Eddies
Languages : en
Pages : 85

Get Book Here

Book Description
The discontinuous Galerkin (DG) method is a formulation of the finite element method (FEM). DG provides the ability for a high order of accuracy in complex geometries, and allows for highly efficient parallelization algorithms. These attributes make the DG method attractive for solving the Navier-Stokes equations for large eddy simulation (LES). The main goal of this work is to investigate the feasibility of adopting an explicit filter in the numerical solution of the Navier-Stokes equations with DG. Explicit filtering has been shown to increase the numerical stability of under-resolved simulations and is needed for LES with dynamic sub-grid scale (SGS) models. The explicit filter takes advantage of DG’s framework where the solution is approximated using a polyno- mial basis where the higher modes of the solution correspond to a higher order polynomial basis. By removing high order modes, the filtered solution contains low order frequency content much like an explicit low pass filter. The explicit filter implementation is tested on a simple 1-D solver with an initial condi- tion that has some similarity to turbulent flows. The explicit filter does restrict the resolution as well as remove accumulated energy in the higher modes from aliasing. However, the ex- plicit filter is unable to remove numerical errors causing numerical dissipation. A second test case solves the 3-D Navier-Stokes equations of the Taylor-Green vortex flow (TGV). The TGV is useful for SGS model testing because it is initially laminar and transitions into a fully turbulent flow. The SGS models investigated include the constant coefficient Smagorinsky model, dynamic Smagorinsky model, and dynamic Heinz model. The constant coefficient Smagorinsky model is over dissipative, this is generally not desirable however it does add stability. The dynamic Smagorinsky model generally performs better, especially during the laminar-turbulent transition region as expected. The dynamic Heinz model which is based on an improved model, handles the laminar-turbulent transition region well while also showing additional robustness.

Explicit Filtering in Large Eddy Simulation Using a Discontinuous Galerkin Method

Explicit Filtering in Large Eddy Simulation Using a Discontinuous Galerkin Method PDF Author: Matthew J. Brazell
Publisher:
ISBN: 9781339441535
Category : Eddies
Languages : en
Pages : 85

Get Book Here

Book Description
The discontinuous Galerkin (DG) method is a formulation of the finite element method (FEM). DG provides the ability for a high order of accuracy in complex geometries, and allows for highly efficient parallelization algorithms. These attributes make the DG method attractive for solving the Navier-Stokes equations for large eddy simulation (LES). The main goal of this work is to investigate the feasibility of adopting an explicit filter in the numerical solution of the Navier-Stokes equations with DG. Explicit filtering has been shown to increase the numerical stability of under-resolved simulations and is needed for LES with dynamic sub-grid scale (SGS) models. The explicit filter takes advantage of DG’s framework where the solution is approximated using a polyno- mial basis where the higher modes of the solution correspond to a higher order polynomial basis. By removing high order modes, the filtered solution contains low order frequency content much like an explicit low pass filter. The explicit filter implementation is tested on a simple 1-D solver with an initial condi- tion that has some similarity to turbulent flows. The explicit filter does restrict the resolution as well as remove accumulated energy in the higher modes from aliasing. However, the ex- plicit filter is unable to remove numerical errors causing numerical dissipation. A second test case solves the 3-D Navier-Stokes equations of the Taylor-Green vortex flow (TGV). The TGV is useful for SGS model testing because it is initially laminar and transitions into a fully turbulent flow. The SGS models investigated include the constant coefficient Smagorinsky model, dynamic Smagorinsky model, and dynamic Heinz model. The constant coefficient Smagorinsky model is over dissipative, this is generally not desirable however it does add stability. The dynamic Smagorinsky model generally performs better, especially during the laminar-turbulent transition region as expected. The dynamic Heinz model which is based on an improved model, handles the laminar-turbulent transition region well while also showing additional robustness.

Large Eddy Simulation in the Split Form Discontinuous Galerkin Method for the Compressible Navier-Stokes

Large Eddy Simulation in the Split Form Discontinuous Galerkin Method for the Compressible Navier-Stokes PDF Author: Anthony P. Edmonds
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 153

Get Book Here

Book Description
The discontinuous Galerkin (DG) method is a finite element method. The method is computationally efficient, scalable in parallel, and is capable of handling complex geometries; these attributes make the DG method popular for solving the Navier-Stokes equations .Traditional DG formulations utilize the weak form of the conservative equations, whereas there is a discretization that utilizes the strong formulation of these equations: this is called the split-form discretization. The goal of this work is to study large eddy simulation (LES) in the split-form discretization and contrast it with the standard weak form DG discretization. An explicit filtering operation is required for LES using a dynamic sub-grid scale (SGS) model referred to as the dynamic Smagorisnky model. Two modes of filtering were explored: a polynomial cutoff filter and a Laplacian filter. The polynomial cutoff filter works by removing high order modes. The high-order modes correspond to the high-order energy content of the solution. The Laplacian filter applies the Laplace operator to smooth out areas of the flow with large gradients. These areas correspond to this high-order energy content. The dynamic Smagorisnky model is analyzed along side the constant Smagorisnky model. The models were analyzed using the Taylor-Green vortex (TGV) problem. The TGV initially is laminar but then transitions to fully turbulent flow. This is an ideal candidate for studying the sub-grid scale (SGS) models used in LES; as this transition is a challenge. The constant Smagorisnky model is overly dissipative, and under predicts kinetic energy. The dynamic model performs better, however is far more costly to calculate. The split-form discretization is more dissipative than the standard DG formulation, however it is far more stable.

Direct and Large Eddy Simulation XII

Direct and Large Eddy Simulation XII PDF Author: Manuel García-Villalba
Publisher: Springer Nature
ISBN: 3030428222
Category : Technology & Engineering
Languages : en
Pages : 478

Get Book Here

Book Description
This book gathers the proceedings of the 12th instalment in the bi-annual Workshop series on Direct and Large Eddy Simulation (DLES), which began in 1994 and focuses on modern techniques used to simulate turbulent flows based on the partial or full resolution of the instantaneous turbulent flow structure. With the rapidly expanding capacities of modern computers, this approach has attracted more and more interest over the years and will undoubtedly be further enhanced and applied in the future. Hybrid modelling techniques based on a combination of LES and RANS approaches also fall into this category and are covered as well. The goal of the Workshop was to share the state of the art in DNS, LES and related techniques for the computation and modelling of turbulent and transitional flows. The respective papers highlight the latest advances in the prediction, understanding and control of turbulent flows in academic and industrial applications.

TILDA: Towards Industrial LES/DNS in Aeronautics

TILDA: Towards Industrial LES/DNS in Aeronautics PDF Author: Charles Hirsch
Publisher: Springer Nature
ISBN: 3030620484
Category : Technology & Engineering
Languages : en
Pages : 550

Get Book Here

Book Description
This book offers detailed insights into new methods for high-fidelity CFD, and their industrially relevant applications in aeronautics. It reports on the H2020 TILDA project, funded by the European Union in 2015-2018. The respective chapters demonstrate the potential of high-order methods for enabling more accurate predictions of non-linear, unsteady flows, ensuring enhanced reliability in CFD predictions. The book highlights industrially relevant findings and representative test cases on the development of high-order methods for unsteady turbulence simulations on unstructured grids; on the development of the LES/DNS methodology by means of multilevel, adaptive, fractal and similar approaches for applications on unstructured grids; and on leveraging existent large-scale HPC networks to facilitate the industrial applications of LES/DNS in daily practice. Furthermore, the book discusses multidisciplinary applications of high-order methods in the area of aero-acoustics. All in all, it offers timely insights into the application and performance of high-order methods for CFD, and an extensive reference guide for researchers, graduate students, and industrial engineers whose work involves CFD and turbulence modeling.

On the Use of Discontinuous Galerkin High Order Methods for Large Eddy Simulation

On the Use of Discontinuous Galerkin High Order Methods for Large Eddy Simulation PDF Author: David G. Flad
Publisher:
ISBN: 9783843938358
Category :
Languages : en
Pages :

Get Book Here

Book Description


Direct and Large-Eddy Simulation IX

Direct and Large-Eddy Simulation IX PDF Author: Jochen Fröhlich
Publisher: Springer
ISBN: 3319144480
Category : Technology & Engineering
Languages : en
Pages : 656

Get Book Here

Book Description
This volume reflects the state of the art of numerical simulation of transitional and turbulent flows and provides an active forum for discussion of recent developments in simulation techniques and understanding of flow physics. Following the tradition of earlier DLES workshops, these papers address numerous theoretical and physical aspects of transitional and turbulent flows. At an applied level it contributes to the solution of problems related to energy production, transportation, magneto-hydrodynamics and the environment. A special session is devoted to quality issues of LES. The ninth Workshop on 'Direct and Large-Eddy Simulation' (DLES-9) was held in Dresden, April 3-5, 2013, organized by the Institute of Fluid Mechanics at Technische Universität Dresden. This book is of interest to scientists and engineers, both at an early level in their career and at more senior levels.

Progress in Hybrid RANS-LES Modelling

Progress in Hybrid RANS-LES Modelling PDF Author: Sharath Girimaji
Publisher: Springer
ISBN: 331915141X
Category : Technology & Engineering
Languages : en
Pages : 481

Get Book Here

Book Description
This book gathers the proceedings of the Fifth Symposium on Hybrid RANS-LES Methods, which was held on March 19-21 in College Station, Texas, USA. The different chapters, written by leading experts, reports on the most recent developments in flow physics modelling, and gives a special emphasis to industrially relevant applications of hybrid RANS-LES methods and other turbulence-resolving modelling approaches. The book addresses academic researchers, graduate students, industrial engineers, as well as industrial R&D managers and consultants dealing with turbulence modelling, simulation and measurement, and with multidisciplinary applications of computational fluid dynamics (CFD), such as flow control, aero-acoustics, aero-elasticity and CFD-based multidisciplinary optimization. It discusses in particular advanced hybrid RANS-LES methods. Further topics include wall-modelled Large Eddy Simulation (WMLES) methods, embedded LES, and a comparison of the LES methods with both hybrid RANS-LES and URANS methods. Overall, the book provides readers with a snapshot on the state-of-the-art in CFD and turbulence modelling, with a special focus to hybrid RANS-LES methods and their industrial applications.

Design and Application of Discrete Explicit Filters

Design and Application of Discrete Explicit Filters PDF Author: Deconinck Willem
Publisher: LAP Lambert Academic Publishing
ISBN: 9783659529887
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
In the context of Large Eddy Simulation (LES) of turbulent flows, there is a current need to compare and evaluate different proposed subfilter-scale models in order to assess their suitability for various applications. In order to carefully compare subfilter-scale models and compare LES predictions to Direct Numerical Simulation (DNS) results (the latter would be helpful in the comparison and validation of models), there is a real need for a "grid-independent" LES capability and explicit filtering methods offer one means by which this may be achieved. Advantages of explicit filtering are that it provides a means for eliminating aliasing errors, allows for the direct control of commutation errors, and most importantly allows a decoupling between the mesh spacing and the filter width which is the primary reason why there are difficulties in comparing LES solutions obtained on different grids. This book considers the design and assessment of discrete explicit filters and their application to isotropic turbulence prediction. This book was submitted for the degree of Masters of Applied Science at the Graduate Department of Aerospace Engineering at the University of Toronto.

Large Eddy Simulation for Incompressible Flows

Large Eddy Simulation for Incompressible Flows PDF Author: P. Sagaut
Publisher: Springer Science & Business Media
ISBN: 9783540263449
Category : Computers
Languages : en
Pages : 600

Get Book Here

Book Description
First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."

Explicitly Filtered Large-eddy Simulation

Explicitly Filtered Large-eddy Simulation PDF Author: Sanjeeb T. Bose
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The governing equations for large-eddy simulation (LES) are derived from the application of a low-pass filter to the Navier-Stokes equations. LES has shown to be a tractable method for the computation of high Reynolds number turbulent flows, primarily because the filtration of the Navier-Stokes equations removes the small scales of motion that would otherwise impose prohibitive resolution requirements. The effect of the scales of motion that are smaller than the filter width on the large, resolved scales are then modeled. In practice, the filter used to derive the LES governing equation is not formally defined and instead, it is assumed that the discretization of LES equation will implicitly act as a low-pass filter. This study investigates an alternative derivation of the LES governing equations that requires the formal definition of the filtration operator, known as explicitly filtered LES. It is shown that decoupling the filtering operation from the underlying grid allows for the isolation of subgrid-scale (SGS) modeling errors from numerical discretization errors. In this grid-independent context, it is demonstrated that standard eddy viscosity models are inaccurate at coarse resolutions. By leveraging the definition of the filtering operator, an SGS model is subsequently derived from a low order perturbation of the explicitly filtered governing equations. LES of canonical wall bounded flows (e.g., channels and ducts) at coarse resolutions validate the improved accuracy of the proposed SGS model. Simulations of practical engineering configurations require the ability to handle complex geometries. Previous explicitly filtered LES calculations have been limited to structured grid discretizations because of the difficulty in constructing a low-pass filter on unstructured grids. The explicitly filtered framework and the proposed SGS model are extended for use in unstructured grid environments through the use of differential filters. Unstructured grids also provide the ability to locally increase resolution in regions of the flow where the SGS model is unable to accurately model the stress provided by the unresolved scales of motion. A novel adaptation technique is suggested where the mesh (and/or filter) is refined in regions of the flow where estimates of the SGS fluctuations are largest. An LES of a three-dimensional stalled diffuser is performed to demonstrate the efficacy of the SGS model based mesh refinement criteria and the capabilities of the differential filters on unstructured grids. Lastly, a dynamic wall boundary condition is derived from the differential filter for wall-modeled large-eddy simulation where the near wall turbulence is not resolved. This differential filter based wall model successfully predicts mean dynamics of both wall-bounded flows (channels) and separating flows in complex geometries (airfoil at near-stall conditions) without the prescription of any ad hoc coefficients or RANS/LES hybridization.