Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools

Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools PDF Author: József Dombi
Publisher: Springer Nature
ISBN: 3030722805
Category : Technology & Engineering
Languages : en
Pages : 186

Get Book Here

Book Description
The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable – and even, in many cases, more efficient. Fuzzy logic together with multi-criteria decision-making tools provides very powerful tools for modeling human thinking. Based on their common theoretical basis, we propose a consistent framework for modeling human thinking by using the tools of all three fields: fuzzy logic, multi-criteria decision-making, and deep learning to help reduce the black-box nature of neural models; a challenge that is of vital importance to the whole research community.

Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools

Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools PDF Author: József Dombi
Publisher: Springer Nature
ISBN: 3030722805
Category : Technology & Engineering
Languages : en
Pages : 186

Get Book Here

Book Description
The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable – and even, in many cases, more efficient. Fuzzy logic together with multi-criteria decision-making tools provides very powerful tools for modeling human thinking. Based on their common theoretical basis, we propose a consistent framework for modeling human thinking by using the tools of all three fields: fuzzy logic, multi-criteria decision-making, and deep learning to help reduce the black-box nature of neural models; a challenge that is of vital importance to the whole research community.

Data Science and Intelligent Systems

Data Science and Intelligent Systems PDF Author: Radek Silhavy
Publisher: Springer Nature
ISBN: 3030903214
Category : Technology & Engineering
Languages : en
Pages : 1073

Get Book Here

Book Description
This book constitutes the second part of refereed proceedings of the 5th Computational Methods in Systems and Software 2021 (CoMeSySo 2021) proceedings. The real-world problems related to data science and algorithm design related to systems and software engineering are presented in this papers. Furthermore, the basic research’ papers that describe novel approaches in the data science, algorithm design and in systems and software engineering are included. The CoMeSySo 2021 conference is breaking the barriers, being held online. CoMeSySo 2021 intends to provide an international forum for the discussion of the latest high-quality research results

Computational Intelligence and Mathematics for Tackling Complex Problems 5

Computational Intelligence and Mathematics for Tackling Complex Problems 5 PDF Author: M.Eugenia Cornejo
Publisher: Springer Nature
ISBN: 3031469798
Category : Technology & Engineering
Languages : en
Pages : 151

Get Book Here

Book Description
This book is focused on connecting two interesting research areas, mathematics and computational intelligence, by means of appealing contributions devoted to give solutions to different challenges of the current technological age. It continues the collection of articles dealing with the important and efficient combination of these both areas, with a stress of fuzzy systems and fuzzy logic. It also includes relevant papers on the development and application of mathematics, artificial intelligence, and automatic reasoning tools to Digital Forensics, which have been developed within the framework of the COST Action DigForASP-CA17124 (digforasp.uca.es).

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning PDF Author: Wojciech Samek
Publisher: Springer Nature
ISBN: 3030289540
Category : Computers
Languages : en
Pages : 435

Get Book Here

Book Description
The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.

NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM

NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM PDF Author: S. RAJASEKARAN
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120321863
Category : Computers
Languages : en
Pages : 459

Get Book Here

Book Description
This book provides comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence. The constituent technologies discussed comprise neural networks, fuzzy logic, genetic algorithms, and a number of hybrid systems which include classes such as neuro-fuzzy, fuzzy-genetic, and neuro-genetic systems. The hybridization of the technologies is demonstrated on architectures such as Fuzzy-Back-propagation Networks (NN-FL), Simplified Fuzzy ARTMAP (NN-FL), and Fuzzy Associative Memories. The book also gives an exhaustive discussion of FL-GA hybridization. Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book with a wealth of information that is clearly presented and illustrated by many examples and applications is designed for use as a text for courses in soft computing at both the senior undergraduate and first-year post-graduate engineering levels. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.

Multicriteria Decision Analysis in Geographic Information Science

Multicriteria Decision Analysis in Geographic Information Science PDF Author: Jacek Malczewski
Publisher: Springer
ISBN: 3540747575
Category : Science
Languages : en
Pages : 335

Get Book Here

Book Description
This book is intended for the GIS Science and Decision Science communities. It is primarily targeted at postgraduate students and practitioners in GIS and urban, regional and environmental planning as well as applied decision analysis. It is also suitable for those studying and working with spatial decision support systems. The main objectives of this book are to effectivley integrate Multicriteria Decision Analysis (MCDA) into Geographic Information Science (GIScience), to provide a comprehensive account of theories, methods, technologies and tools for tackling spatial decision problems and to demonstrate how the GIS-MCDA approaches can be used in a wide range of planning and management situations.

Fuzzy Logic and Mathematics

Fuzzy Logic and Mathematics PDF Author: Radim Bělohlávek
Publisher: Oxford University Press
ISBN: 0190200014
Category : Mathematics
Languages : en
Pages : 545

Get Book Here

Book Description
The main part of the book is a comprehensive overview of the development of fuzzy logic and its applications in various areas of human affair since its genesis in the mid 1960s. This overview is then employed for assessing the significance of fuzzy logic and mathematics based on fuzzy logic.

Rule Extraction from Support Vector Machines

Rule Extraction from Support Vector Machines PDF Author: Joachim Diederich
Publisher: Springer
ISBN: 3540753907
Category : Technology & Engineering
Languages : en
Pages : 267

Get Book Here

Book Description
Support vector machines (SVMs) are one of the most active research areas in machine learning. SVMs have shown good performance in a number of applications, including text and image classification. However, the learning capability of SVMs comes at a cost – an inherent inability to explain in a comprehensible form, the process by which a learning result was reached. Hence, the situation is similar to neural networks, where the apparent lack of an explanation capability has led to various approaches aiming at extracting symbolic rules from neural networks. For SVMs to gain a wider degree of acceptance in fields such as medical diagnosis and security sensitive areas, it is desirable to offer an explanation capability. User explanation is often a legal requirement, because it is necessary to explain how a decision was reached or why it was made. This book provides an overview of the field and introduces a number of different approaches to extracting rules from support vector machines developed by key researchers. In addition, successful applications are outlined and future research opportunities are discussed. The book is an important reference for researchers and graduate students, and since it provides an introduction to the topic, it will be important in the classroom as well. Because of the significance of both SVMs and user explanation, the book is of relevance to data mining practitioners and data analysts.

Knowledge-Based Systems

Knowledge-Based Systems PDF Author: Rajendra Akerkar
Publisher: Jones & Bartlett Publishers
ISBN: 1449662706
Category : Computers
Languages : en
Pages : 375

Get Book Here

Book Description
A knowledge-based system (KBS) is a system that uses artificial intelligence techniques in problem-solving processes to support human decision-making, learning, and action. Ideal for advanced-undergraduate and graduate students, as well as business professionals, this text is designed to help users develop an appreciation of KBS and their architecture and understand a broad variety of knowledge-based techniques for decision support and planning. It assumes basic computer science skills and a math background that includes set theory, relations, elementary probability, and introductory concepts of artificial intelligence. Each of the 12 chapters is designed to be modular, providing instructors with the flexibility to model the book to their own course needs. Exercises are incorporated throughout the text to highlight certain aspects of the material presented and to simulate thought and discussion. A comprehensive text and resource, Knowledge-Based Systems provides access to the most current information in KBS and new artificial intelligences, as well as neural networks, fuzzy logic, genetic algorithms, and soft systems.

Explainable AI in Healthcare and Medicine

Explainable AI in Healthcare and Medicine PDF Author: Arash Shaban-Nejad
Publisher: Springer Nature
ISBN: 3030533522
Category : Technology & Engineering
Languages : en
Pages : 344

Get Book Here

Book Description
This book highlights the latest advances in the application of artificial intelligence and data science in health care and medicine. Featuring selected papers from the 2020 Health Intelligence Workshop, held as part of the Association for the Advancement of Artificial Intelligence (AAAI) Annual Conference, it offers an overview of the issues, challenges, and opportunities in the field, along with the latest research findings. Discussing a wide range of practical applications, it makes the emerging topics of digital health and explainable AI in health care and medicine accessible to a broad readership. The availability of explainable and interpretable models is a first step toward building a culture of transparency and accountability in health care. As such, this book provides information for scientists, researchers, students, industry professionals, public health agencies, and NGOs interested in the theory and practice of computational models of public and personalized health intelligence.