Author: Momčilo Gavrilov
Publisher: Springer
ISBN: 3319636944
Category : Science
Languages : en
Pages : 159
Book Description
This thesis reveals how the feedback trap technique, developed to trap small objects for biophysical measurement, could be adapted for the quantitative study of the thermodynamic properties of small systems. The experiments in this thesis are related to Maxwell’s demon, a hypothetical intelligent, “neat fingered” being that uses information to extract work from heat, apparently creating a perpetual-motion machine. The second law of thermodynamics should make that impossible, but how? That question has stymied physicists and provoked debate for a century and a half. The experiments in this thesis confirm a hypothesis proposed by Rolf Landauer over fifty years ago: that Maxwell’s demon would need to erase information, and that erasing information—resetting the measuring device to a standard starting state—requires dissipating as much energy as is gained. For his thesis work, the author used a “feedback trap” to study the motion of colloidal particles in “v irtual potentials” that may be manipulated arbitrarily. The feedback trap confines a freely diffusing particle in liquid by periodically measuring its position and applying an electric field to move it back to the origin.
Experiments on the Thermodynamics of Information Processing
Author: Momčilo Gavrilov
Publisher: Springer
ISBN: 3319636944
Category : Science
Languages : en
Pages : 159
Book Description
This thesis reveals how the feedback trap technique, developed to trap small objects for biophysical measurement, could be adapted for the quantitative study of the thermodynamic properties of small systems. The experiments in this thesis are related to Maxwell’s demon, a hypothetical intelligent, “neat fingered” being that uses information to extract work from heat, apparently creating a perpetual-motion machine. The second law of thermodynamics should make that impossible, but how? That question has stymied physicists and provoked debate for a century and a half. The experiments in this thesis confirm a hypothesis proposed by Rolf Landauer over fifty years ago: that Maxwell’s demon would need to erase information, and that erasing information—resetting the measuring device to a standard starting state—requires dissipating as much energy as is gained. For his thesis work, the author used a “feedback trap” to study the motion of colloidal particles in “v irtual potentials” that may be manipulated arbitrarily. The feedback trap confines a freely diffusing particle in liquid by periodically measuring its position and applying an electric field to move it back to the origin.
Publisher: Springer
ISBN: 3319636944
Category : Science
Languages : en
Pages : 159
Book Description
This thesis reveals how the feedback trap technique, developed to trap small objects for biophysical measurement, could be adapted for the quantitative study of the thermodynamic properties of small systems. The experiments in this thesis are related to Maxwell’s demon, a hypothetical intelligent, “neat fingered” being that uses information to extract work from heat, apparently creating a perpetual-motion machine. The second law of thermodynamics should make that impossible, but how? That question has stymied physicists and provoked debate for a century and a half. The experiments in this thesis confirm a hypothesis proposed by Rolf Landauer over fifty years ago: that Maxwell’s demon would need to erase information, and that erasing information—resetting the measuring device to a standard starting state—requires dissipating as much energy as is gained. For his thesis work, the author used a “feedback trap” to study the motion of colloidal particles in “v irtual potentials” that may be manipulated arbitrarily. The feedback trap confines a freely diffusing particle in liquid by periodically measuring its position and applying an electric field to move it back to the origin.
Quantum Steampunk
Author: Nicole Yunger Halpern
Publisher: JHU Press
ISBN: 1421443724
Category : Science
Languages : en
Pages : 305
Book Description
"The science-fiction genre known as steampunk juxtaposes futuristic technologies with Victorian settings. This fantasy is becoming reality at the intersection of two scientific fields-twenty-first-century quantum physics and nineteenth-century thermodynamics, or the study of energy-in a discipline known as quantum steampunk"--
Publisher: JHU Press
ISBN: 1421443724
Category : Science
Languages : en
Pages : 305
Book Description
"The science-fiction genre known as steampunk juxtaposes futuristic technologies with Victorian settings. This fantasy is becoming reality at the intersection of two scientific fields-twenty-first-century quantum physics and nineteenth-century thermodynamics, or the study of energy-in a discipline known as quantum steampunk"--
Information Thermodynamics on Causal Networks and its Application to Biochemical Signal Transduction
Author: Sosuke Ito
Publisher: Springer
ISBN: 981101664X
Category : Science
Languages : en
Pages : 140
Book Description
In this book the author presents a general formalism of nonequilibrium thermodynamics with complex information flows induced by interactions among multiple fluctuating systems. The author has generalized stochastic thermodynamics with information by using a graphical theory. Characterizing nonequilibrium dynamics by causal networks, he has obtained a novel generalization of the second law of thermodynamics with information that is applicable to quite a broad class of stochastic dynamics such as information transfer between multiple Brownian particles, an autonomous biochemical reaction, and complex dynamics with a time-delayed feedback control. This study can produce further progress in the study of Maxwell’s demon for special cases. As an application to these results, information transmission and thermodynamic dissipation in biochemical signal transduction are discussed. The findings presented here can open up a novel biophysical approach to understanding information processing in living systems.
Publisher: Springer
ISBN: 981101664X
Category : Science
Languages : en
Pages : 140
Book Description
In this book the author presents a general formalism of nonequilibrium thermodynamics with complex information flows induced by interactions among multiple fluctuating systems. The author has generalized stochastic thermodynamics with information by using a graphical theory. Characterizing nonequilibrium dynamics by causal networks, he has obtained a novel generalization of the second law of thermodynamics with information that is applicable to quite a broad class of stochastic dynamics such as information transfer between multiple Brownian particles, an autonomous biochemical reaction, and complex dynamics with a time-delayed feedback control. This study can produce further progress in the study of Maxwell’s demon for special cases. As an application to these results, information transmission and thermodynamic dissipation in biochemical signal transduction are discussed. The findings presented here can open up a novel biophysical approach to understanding information processing in living systems.
Experiments in Heat Transfer and Thermodynamics
Author: Robert Alan Granger
Publisher: Cambridge University Press
ISBN: 9780521449250
Category : Science
Languages : en
Pages : 304
Book Description
Engineering curricula are notoriously demanding. One way to make the material easier to grasp and more fun to learn is to emphasize the experimental or "hands-on" aspects of engineering problems. This unique book is about learning through active participation in laboratory experiments, and it specifically aims to dispel some of the mystery so many students associate with the study of thermodynamics and heat transfer. In it, the author presents a collection of experiments in heat transfer and thermodynamics contributed by leading engineering educators. The experiments have been tested, evaluated, and proved successful for classroom use. Each experiment follows the same step-by-step format, which includes the objective of the experiment, apparatus needed, procedure, suggested headings, and references. The experiments use apparatus that is easily built or attainable. Among the topics covered are heat conduction, convection, boiling, mixing, diffusion, radiation, heat pipes and exchangers, and thermodynamics. The book will be especially useful as a companion to standard heat transfer and thermodynamics texts.
Publisher: Cambridge University Press
ISBN: 9780521449250
Category : Science
Languages : en
Pages : 304
Book Description
Engineering curricula are notoriously demanding. One way to make the material easier to grasp and more fun to learn is to emphasize the experimental or "hands-on" aspects of engineering problems. This unique book is about learning through active participation in laboratory experiments, and it specifically aims to dispel some of the mystery so many students associate with the study of thermodynamics and heat transfer. In it, the author presents a collection of experiments in heat transfer and thermodynamics contributed by leading engineering educators. The experiments have been tested, evaluated, and proved successful for classroom use. Each experiment follows the same step-by-step format, which includes the objective of the experiment, apparatus needed, procedure, suggested headings, and references. The experiments use apparatus that is easily built or attainable. Among the topics covered are heat conduction, convection, boiling, mixing, diffusion, radiation, heat pipes and exchangers, and thermodynamics. The book will be especially useful as a companion to standard heat transfer and thermodynamics texts.
Decoding Reality
Author: Vlatko Vedral
Publisher: OUP Oxford
ISBN: 0191636290
Category : Science
Languages : en
Pages : 206
Book Description
For a physicist, all the world is information. The Universe and its workings are the ebb and flow of information. We are all transient patterns of information, passing on the recipe for our basic forms to future generations using a four-letter digital code called DNA. In this engaging and mind-stretching account, Vlatko Vedral considers some of the deepest questions about the Universe and considers the implications of interpreting it in terms of information. He explains the nature of information, the idea of entropy, and the roots of this thinking in thermodynamics. He describes the bizarre effects of quantum behaviour — effects such as 'entanglement', which Einstein called 'spooky action at a distance', and explores cutting edge work on harnessing quantum effects in hyperfast quantum computers, and how recent evidence suggests that the weirdness of the quantum world, once thought limited to the tiniest scales, may reach into the macro world. Vedral finishes by considering the answer to the ultimate question: where did all of the information in the Universe come from? The answers he considers are exhilarating, drawing upon the work of distinguished physicist John Wheeler. The ideas challenge our concept of the nature of particles, of time, of determinism, and of reality itself. This edition includes a new foreword from the author, reflecting on changes in the world of quantum information since first publication. Oxford Landmark Science books are 'must-read' classics of modern science writing which have crystallized big ideas, and shaped the way we think.
Publisher: OUP Oxford
ISBN: 0191636290
Category : Science
Languages : en
Pages : 206
Book Description
For a physicist, all the world is information. The Universe and its workings are the ebb and flow of information. We are all transient patterns of information, passing on the recipe for our basic forms to future generations using a four-letter digital code called DNA. In this engaging and mind-stretching account, Vlatko Vedral considers some of the deepest questions about the Universe and considers the implications of interpreting it in terms of information. He explains the nature of information, the idea of entropy, and the roots of this thinking in thermodynamics. He describes the bizarre effects of quantum behaviour — effects such as 'entanglement', which Einstein called 'spooky action at a distance', and explores cutting edge work on harnessing quantum effects in hyperfast quantum computers, and how recent evidence suggests that the weirdness of the quantum world, once thought limited to the tiniest scales, may reach into the macro world. Vedral finishes by considering the answer to the ultimate question: where did all of the information in the Universe come from? The answers he considers are exhilarating, drawing upon the work of distinguished physicist John Wheeler. The ideas challenge our concept of the nature of particles, of time, of determinism, and of reality itself. This edition includes a new foreword from the author, reflecting on changes in the world of quantum information since first publication. Oxford Landmark Science books are 'must-read' classics of modern science writing which have crystallized big ideas, and shaped the way we think.
The Energetics of Computing in Life and Machines
Author: Chris Kempes
Publisher: Seminar
ISBN: 9781947864184
Category : Science
Languages : en
Pages : 500
Book Description
Why do computers use so much energy? What are the fundamental physical laws governing the relationship between the precise computation run by a system, whether artificial or natural, and how much energy that computation requires? This volume integrates concepts from diverse fields, cultivating a modern, nonequilibrium thermodynamics of computation.
Publisher: Seminar
ISBN: 9781947864184
Category : Science
Languages : en
Pages : 500
Book Description
Why do computers use so much energy? What are the fundamental physical laws governing the relationship between the precise computation run by a system, whether artificial or natural, and how much energy that computation requires? This volume integrates concepts from diverse fields, cultivating a modern, nonequilibrium thermodynamics of computation.
NMR Quantum Information Processing
Author: Ivan Oliveira
Publisher: Elsevier
ISBN: 0080497527
Category : Science
Languages : en
Pages : 265
Book Description
Quantum Computation and Quantum Information (QIP) deals with the identification and use of quantum resources for information processing. This includes three main branches of investigation: quantum algorithm design, quantum simulation andquantum communication, including quantum cryptography. Along the past few years, QIP has become one of the most active area ofresearch in both, theoretical and experimental physics, attracting students and researchers fascinated, not only by the potentialpractical applications of quantum computers, but also by the possibility of studying fundamental physics at the deepest level of quantum phenomena.NMR Quantum Computation and Quantum Information Processing describes the fundamentals of NMR QIP, and the main developments which can lead to a large-scale quantum processor. The text starts with a general chapter onthe interesting topic of the physics of computation. The very first ideas which sparkled the development of QIP came from basic considerations of the physical processes underlying computational actions. In Chapter 2 it is made an introduction to NMR, including the hardware and other experimental aspects of the technique. InChapter 3 we revise the fundamentals of Quantum Computation and Quantum Information. The chapter is very much based on the extraordinary book of Michael A. Nielsen and Isaac L. Chuang, withan upgrade containing some of the latest developments, such as QIP in phase space, and telecloning. Chapter 4 describes how NMRgenerates quantum logic gates from radiofrequency pulses, upon which quantum protocols are built. It also describes the important technique of Quantum State Tomography for both, quadrupole and spin1/2 nuclei. Chapter 5 describes some of the main experiments of quantum algorithm implementation by NMR, quantum simulation and QIP in phase space. The important issue of entanglement in NMR QIPexperiments is discussed in Chapter 6. This has been a particularly exciting topic in the literature. The chapter contains a discussionon the theoretical aspects of NMR entanglement, as well as some of the main experiments where this phenomenon is reported. Finally, Chapter 7 is an attempt to address the future of NMR QIP, based invery recent developments in nanofabrication and single-spin detection experiments. Each chapter is followed by a number of problems and solutions.* Presents a large number of problems with solutions, ideal for students* Brings together topics in different areas: NMR, nanotechnology, quantum computation * Extensive references
Publisher: Elsevier
ISBN: 0080497527
Category : Science
Languages : en
Pages : 265
Book Description
Quantum Computation and Quantum Information (QIP) deals with the identification and use of quantum resources for information processing. This includes three main branches of investigation: quantum algorithm design, quantum simulation andquantum communication, including quantum cryptography. Along the past few years, QIP has become one of the most active area ofresearch in both, theoretical and experimental physics, attracting students and researchers fascinated, not only by the potentialpractical applications of quantum computers, but also by the possibility of studying fundamental physics at the deepest level of quantum phenomena.NMR Quantum Computation and Quantum Information Processing describes the fundamentals of NMR QIP, and the main developments which can lead to a large-scale quantum processor. The text starts with a general chapter onthe interesting topic of the physics of computation. The very first ideas which sparkled the development of QIP came from basic considerations of the physical processes underlying computational actions. In Chapter 2 it is made an introduction to NMR, including the hardware and other experimental aspects of the technique. InChapter 3 we revise the fundamentals of Quantum Computation and Quantum Information. The chapter is very much based on the extraordinary book of Michael A. Nielsen and Isaac L. Chuang, withan upgrade containing some of the latest developments, such as QIP in phase space, and telecloning. Chapter 4 describes how NMRgenerates quantum logic gates from radiofrequency pulses, upon which quantum protocols are built. It also describes the important technique of Quantum State Tomography for both, quadrupole and spin1/2 nuclei. Chapter 5 describes some of the main experiments of quantum algorithm implementation by NMR, quantum simulation and QIP in phase space. The important issue of entanglement in NMR QIPexperiments is discussed in Chapter 6. This has been a particularly exciting topic in the literature. The chapter contains a discussionon the theoretical aspects of NMR entanglement, as well as some of the main experiments where this phenomenon is reported. Finally, Chapter 7 is an attempt to address the future of NMR QIP, based invery recent developments in nanofabrication and single-spin detection experiments. Each chapter is followed by a number of problems and solutions.* Presents a large number of problems with solutions, ideal for students* Brings together topics in different areas: NMR, nanotechnology, quantum computation * Extensive references
Quantum Thermodynamics
Author: Sebastian Deffner
Publisher: Morgan & Claypool Publishers
ISBN: 1643276581
Category : Science
Languages : en
Pages : 132
Book Description
This book provides an introduction to the emerging field of quantum thermodynamics, with particular focus on its relation to quantum information and its implications for quantum computers and next generation quantum technologies. The text, aimed at graduate level physics students with a working knowledge of quantum mechanics and statistical physics, provides a brief overview of the development of classical thermodynamics and its quantum formulation in Chapter 1. Chapter 2 then explores typical thermodynamic settings, such as cycles and work extraction protocols, when the working material is genuinely quantum. Finally, Chapter 3 explores the thermodynamics of quantum information processing and introduces the reader to some more state of-the-art topics in this exciting and rapidly developing research field.
Publisher: Morgan & Claypool Publishers
ISBN: 1643276581
Category : Science
Languages : en
Pages : 132
Book Description
This book provides an introduction to the emerging field of quantum thermodynamics, with particular focus on its relation to quantum information and its implications for quantum computers and next generation quantum technologies. The text, aimed at graduate level physics students with a working knowledge of quantum mechanics and statistical physics, provides a brief overview of the development of classical thermodynamics and its quantum formulation in Chapter 1. Chapter 2 then explores typical thermodynamic settings, such as cycles and work extraction protocols, when the working material is genuinely quantum. Finally, Chapter 3 explores the thermodynamics of quantum information processing and introduces the reader to some more state of-the-art topics in this exciting and rapidly developing research field.
Statistical Thermodynamics of Nonequilibrium Processes
Author: Joel Keizer
Publisher: Springer Science & Business Media
ISBN: 1461210542
Category : Science
Languages : en
Pages : 517
Book Description
The structure of the theory ofthermodynamics has changed enormously since its inception in the middle of the nineteenth century. Shortly after Thomson and Clausius enunciated their versions of the Second Law, Clausius, Maxwell, and Boltzmann began actively pursuing the molecular basis of thermo dynamics, work that culminated in the Boltzmann equation and the theory of transport processes in dilute gases. Much later, Onsager undertook the elucidation of the symmetry oftransport coefficients and, thereby, established himself as the father of the theory of nonequilibrium thermodynamics. Com bining the statistical ideas of Gibbs and Langevin with the phenomenological transport equations, Onsager and others went on to develop a consistent statistical theory of irreversible processes. The power of that theory is in its ability to relate measurable quantities, such as transport coefficients and thermodynamic derivatives, to the results of experimental measurements. As powerful as that theory is, it is linear and limited in validity to a neighborhood of equilibrium. In recent years it has been possible to extend the statistical theory of nonequilibrium processes to include nonlinear effects. The modern theory, as expounded in this book, is applicable to a wide variety of systems both close to and far from equilibrium. The theory is based on the notion of elementary molecular processes, which manifest themselves as random changes in the extensive variables characterizing a system. The theory has a hierarchical character and, thus, can be applied at various levels of molecular detail.
Publisher: Springer Science & Business Media
ISBN: 1461210542
Category : Science
Languages : en
Pages : 517
Book Description
The structure of the theory ofthermodynamics has changed enormously since its inception in the middle of the nineteenth century. Shortly after Thomson and Clausius enunciated their versions of the Second Law, Clausius, Maxwell, and Boltzmann began actively pursuing the molecular basis of thermo dynamics, work that culminated in the Boltzmann equation and the theory of transport processes in dilute gases. Much later, Onsager undertook the elucidation of the symmetry oftransport coefficients and, thereby, established himself as the father of the theory of nonequilibrium thermodynamics. Com bining the statistical ideas of Gibbs and Langevin with the phenomenological transport equations, Onsager and others went on to develop a consistent statistical theory of irreversible processes. The power of that theory is in its ability to relate measurable quantities, such as transport coefficients and thermodynamic derivatives, to the results of experimental measurements. As powerful as that theory is, it is linear and limited in validity to a neighborhood of equilibrium. In recent years it has been possible to extend the statistical theory of nonequilibrium processes to include nonlinear effects. The modern theory, as expounded in this book, is applicable to a wide variety of systems both close to and far from equilibrium. The theory is based on the notion of elementary molecular processes, which manifest themselves as random changes in the extensive variables characterizing a system. The theory has a hierarchical character and, thus, can be applied at various levels of molecular detail.
Quantum Thermodynamic Processes
Author: Guenter Mahler
Publisher: CRC Press
ISBN: 9814463744
Category : Science
Languages : en
Pages : 474
Book Description
The point of departure of this book is a triad of themes: information theory, thermodynamics, and quantum mechanics. These are related: thermodynamics and quantum mechanics form the basis of quantum thermodynamics; information and quantum mechanics underly, inter alia, the notorious quantum measurement problem; and information and thermodynamics ha
Publisher: CRC Press
ISBN: 9814463744
Category : Science
Languages : en
Pages : 474
Book Description
The point of departure of this book is a triad of themes: information theory, thermodynamics, and quantum mechanics. These are related: thermodynamics and quantum mechanics form the basis of quantum thermodynamics; information and quantum mechanics underly, inter alia, the notorious quantum measurement problem; and information and thermodynamics ha