Author: John H. S. Lee
Publisher: Cambridge University Press
ISBN: 9780521897235
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
This book introduces the detonation phenomenon in explosives. It is ideal for engineers and graduate students with a background in thermodynamics and fluid mechanics. The material is mostly qualitative, aiming to illustrate the physical aspects of the phenomenon. Classical idealized theories of detonation waves are presented first. These permit detonation speed, gas properties ahead and behind the detonation wave, and the distribution of fluid properties within the detonation wave itself to be determined. Subsequent chapters describe in detail the real unstable structure of a detonation wave. One-, two-, and three-dimensional computer simulations are presented along with experimental results using various experimental techniques. The important effects of confinement and boundary conditions and their influence on the propagation of a detonation are also discussed. The final chapters cover the various ways detonation waves can be formed and provide a review of the outstanding problems and future directions in detonation research.
The Detonation Phenomenon
Author: John H. S. Lee
Publisher: Cambridge University Press
ISBN: 9780521897235
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
This book introduces the detonation phenomenon in explosives. It is ideal for engineers and graduate students with a background in thermodynamics and fluid mechanics. The material is mostly qualitative, aiming to illustrate the physical aspects of the phenomenon. Classical idealized theories of detonation waves are presented first. These permit detonation speed, gas properties ahead and behind the detonation wave, and the distribution of fluid properties within the detonation wave itself to be determined. Subsequent chapters describe in detail the real unstable structure of a detonation wave. One-, two-, and three-dimensional computer simulations are presented along with experimental results using various experimental techniques. The important effects of confinement and boundary conditions and their influence on the propagation of a detonation are also discussed. The final chapters cover the various ways detonation waves can be formed and provide a review of the outstanding problems and future directions in detonation research.
Publisher: Cambridge University Press
ISBN: 9780521897235
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
This book introduces the detonation phenomenon in explosives. It is ideal for engineers and graduate students with a background in thermodynamics and fluid mechanics. The material is mostly qualitative, aiming to illustrate the physical aspects of the phenomenon. Classical idealized theories of detonation waves are presented first. These permit detonation speed, gas properties ahead and behind the detonation wave, and the distribution of fluid properties within the detonation wave itself to be determined. Subsequent chapters describe in detail the real unstable structure of a detonation wave. One-, two-, and three-dimensional computer simulations are presented along with experimental results using various experimental techniques. The important effects of confinement and boundary conditions and their influence on the propagation of a detonation are also discussed. The final chapters cover the various ways detonation waves can be formed and provide a review of the outstanding problems and future directions in detonation research.
Detonation Control for Propulsion
Author: Jiun-Ming Li
Publisher: Springer
ISBN: 3319689061
Category : Technology & Engineering
Languages : en
Pages : 246
Book Description
This book focuses on the latest developments in detonation engines for aerospace propulsion, with a focus on the rotating detonation engine (RDE). State-of-the-art research contributions are collected from international leading researchers devoted to the pursuit of controllable detonations for practical detonation propulsion. A system-level design of novel detonation engines, performance analysis, and advanced experimental and numerical methods are covered. In addition, the world’s first successful sled demonstration of a rocket rotating detonation engine system and innovations in the development of a kilohertz pulse detonation engine (PDE) system are reported. Readers will obtain, in a straightforward manner, an understanding of the RDE & PDE design, operation and testing approaches, and further specific integration schemes for diverse applications such as rockets for space propulsion and turbojet/ramjet engines for air-breathing propulsion. Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines provides, with its comprehensive coverage from fundamental detonation science to practical research engineering techniques, a wealth of information for scientists in the field of combustion and propulsion. The volume can also serve as a reference text for faculty and graduate students and interested in shock waves, combustion and propulsion.
Publisher: Springer
ISBN: 3319689061
Category : Technology & Engineering
Languages : en
Pages : 246
Book Description
This book focuses on the latest developments in detonation engines for aerospace propulsion, with a focus on the rotating detonation engine (RDE). State-of-the-art research contributions are collected from international leading researchers devoted to the pursuit of controllable detonations for practical detonation propulsion. A system-level design of novel detonation engines, performance analysis, and advanced experimental and numerical methods are covered. In addition, the world’s first successful sled demonstration of a rocket rotating detonation engine system and innovations in the development of a kilohertz pulse detonation engine (PDE) system are reported. Readers will obtain, in a straightforward manner, an understanding of the RDE & PDE design, operation and testing approaches, and further specific integration schemes for diverse applications such as rockets for space propulsion and turbojet/ramjet engines for air-breathing propulsion. Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines provides, with its comprehensive coverage from fundamental detonation science to practical research engineering techniques, a wealth of information for scientists in the field of combustion and propulsion. The volume can also serve as a reference text for faculty and graduate students and interested in shock waves, combustion and propulsion.
International Aerospace Abstracts
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1042
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1042
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702
Book Description
Toward Detonation Theory
Author: Anatoly N. Dremin
Publisher: Springer Science & Business Media
ISBN: 9780387986722
Category : Technology & Engineering
Languages : en
Pages : 172
Book Description
It is known that the Chapman-Jouguet theory of detonation is based on the assumption of an instantaneous and complete transformation of explosives into detonation products in the wave front. Therefore, one should not expect from the theory any interpretations of the detonation limits, such as shock initiation of det onation and kinetic instability and propagation (failure diameter). The Zeldovich-Von Neuman-Doring (ZND) theory of detonation appeared, in fact, as a response to the need for a theory capable of interpreting such limits, and the ZND detonation theory gave qualitative interpretations to the detonation limits. These interpretations were based essentially on the theoretical notion that the mechanism of explosives transformation at detonation is a combustion of a layer of finite thickness of shock-compressed explosive behind the wave shock front with the velocity of the front. However, some experimental findings turned out to be inconsistent with the the ory. A very small change of homogeneous (liquid) explosives detonation velocity with explosive charge diameter near the rather sizable failure diameter is one of the findings. The elucidation of the nature of this finding has led to the discovery of a new phenomenon. This phenomenon has come to be known as the breakdown (BD) of the explosive self-ignition behind the front of shock waves under the effect of rarefaction waves.
Publisher: Springer Science & Business Media
ISBN: 9780387986722
Category : Technology & Engineering
Languages : en
Pages : 172
Book Description
It is known that the Chapman-Jouguet theory of detonation is based on the assumption of an instantaneous and complete transformation of explosives into detonation products in the wave front. Therefore, one should not expect from the theory any interpretations of the detonation limits, such as shock initiation of det onation and kinetic instability and propagation (failure diameter). The Zeldovich-Von Neuman-Doring (ZND) theory of detonation appeared, in fact, as a response to the need for a theory capable of interpreting such limits, and the ZND detonation theory gave qualitative interpretations to the detonation limits. These interpretations were based essentially on the theoretical notion that the mechanism of explosives transformation at detonation is a combustion of a layer of finite thickness of shock-compressed explosive behind the wave shock front with the velocity of the front. However, some experimental findings turned out to be inconsistent with the the ory. A very small change of homogeneous (liquid) explosives detonation velocity with explosive charge diameter near the rather sizable failure diameter is one of the findings. The elucidation of the nature of this finding has led to the discovery of a new phenomenon. This phenomenon has come to be known as the breakdown (BD) of the explosive self-ignition behind the front of shock waves under the effect of rarefaction waves.
Analytical and Experimental Investigations of the Oblique Detonation Wave Engine Concept
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 22
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 22
Book Description
AIAA Journal
Author: American Institute of Aeronautics and Astronautics
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 654
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 654
Book Description
Combustion Processes in Propulsion
Author: Gabriel Roy
Publisher: Butterworth-Heinemann
ISBN: 0123693942
Category : Business & Economics
Languages : en
Pages : 505
Book Description
Chemical propulsion comprises the science and technology of using chemical reactions of any kind to create thrust and thereby propel a vehicle or object to a desired acceleration and speed. Cumbustion Processes in Propulsion focuses on recent advances in the design of very highly efficient, low-pollution-emitting propulsion systems, as well as advances in testing, diagnostics and analysis. It offers unique coverage of Pulse Detonation Engines, which add tremendous power to jet thrust by combining high pressure with ignition of the air/fuel mixture. Readers will learn about the advances in the reduction of jet noise and toxic fuel emissions-something that is being heavily regulated by relevant government agencies. Lead editor is one of the world's foremost combustion researchers, with contributions from some of the world's leading researchers in combustion engineering Covers all major areas of chemical propulsion-from combustion measurement, analysis and simulation, to advanced control of combustion processes, to noise and emission control Includes important information on advanced technologies for reducing jet engine noise and hazardous fuel combustion emissions
Publisher: Butterworth-Heinemann
ISBN: 0123693942
Category : Business & Economics
Languages : en
Pages : 505
Book Description
Chemical propulsion comprises the science and technology of using chemical reactions of any kind to create thrust and thereby propel a vehicle or object to a desired acceleration and speed. Cumbustion Processes in Propulsion focuses on recent advances in the design of very highly efficient, low-pollution-emitting propulsion systems, as well as advances in testing, diagnostics and analysis. It offers unique coverage of Pulse Detonation Engines, which add tremendous power to jet thrust by combining high pressure with ignition of the air/fuel mixture. Readers will learn about the advances in the reduction of jet noise and toxic fuel emissions-something that is being heavily regulated by relevant government agencies. Lead editor is one of the world's foremost combustion researchers, with contributions from some of the world's leading researchers in combustion engineering Covers all major areas of chemical propulsion-from combustion measurement, analysis and simulation, to advanced control of combustion processes, to noise and emission control Includes important information on advanced technologies for reducing jet engine noise and hazardous fuel combustion emissions
Coarse Grained Simulation and Turbulent Mixing
Author: Fenando F. Grinstein
Publisher: Cambridge University Press
ISBN: 1107137047
Category : Science
Languages : en
Pages : 481
Book Description
Reviews our current understanding of the subject. For graduate students and researchers in computational fluid dynamics and turbulence.
Publisher: Cambridge University Press
ISBN: 1107137047
Category : Science
Languages : en
Pages : 481
Book Description
Reviews our current understanding of the subject. For graduate students and researchers in computational fluid dynamics and turbulence.
NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species
Author: Bonnie J. McBride
Publisher:
ISBN:
Category : Chemical equilibrium
Languages : en
Pages : 300
Book Description
Publisher:
ISBN:
Category : Chemical equilibrium
Languages : en
Pages : 300
Book Description