Author:
Publisher:
ISBN:
Category : Chemical engineering
Languages : en
Pages : 634
Book Description
Theoretical Chemical Engineering Abstracts
Author:
Publisher:
ISBN:
Category : Chemical engineering
Languages : en
Pages : 634
Book Description
Publisher:
ISBN:
Category : Chemical engineering
Languages : en
Pages : 634
Book Description
Proceedings - Institution of Mechanical Engineers
Author: Institution of Mechanical Engineers (Great Britain)
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 784
Book Description
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 784
Book Description
Handbook of Hydraulic Resistance
Author: I. E. Idelchik
Publisher:
ISBN: 9788179921180
Category : Fluid dynamics
Languages : en
Pages : 0
Book Description
The handbook has been composed on the basis of processing, systematization and classification of the results of a great number of investigations published at different time. The essential part of the book is the outcome of investigations carried out by the author. The present edition of this handbook should assist in increasing the quality and efficiency of the design and usage of indutrial power engineering and other constructions and also of the devices and apparatus through which liquids and gases move.
Publisher:
ISBN: 9788179921180
Category : Fluid dynamics
Languages : en
Pages : 0
Book Description
The handbook has been composed on the basis of processing, systematization and classification of the results of a great number of investigations published at different time. The essential part of the book is the outcome of investigations carried out by the author. The present edition of this handbook should assist in increasing the quality and efficiency of the design and usage of indutrial power engineering and other constructions and also of the devices and apparatus through which liquids and gases move.
Applied Mechanics Reviews
Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 742
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 742
Book Description
Laminar Flow Forced Convection in Ducts
Author: R. K. Shah
Publisher: Academic Press
ISBN: 1483191303
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
Laminar Flow Forced Convection in Ducts is a sourcebook for compact heat exchanger analytical data. This book describes the analytical solutions for laminar fluid flow and forced convection heat transfer in circular and noncircular pipes, including applicable differential equations and boundary conditions involving velocity and temperature problems of fluid flow. The book also discusses fluid flow—how much power is required to pump fluids through the heat exchanger, as well as the heat transfer—the determination of q" distribution, and the temperature of fluid and walls. The text also analyzes the coolant or heat transfer fluid flows in a nuclear power reactor composed of a bundle of circular section fuel rods located inside a round tube. R.A. Axford addresses fluid flow and heat transfers results for the rod bundle geometry in "Heat Transfer in Rod Bundles." The book also provides an overview and guidelines that can be used for the designer and the applied mathematician. This book is suitable for engineers working in electronics, aerospace, instrumentation, and biomechanics that use cooling or heating exchanges or solar collection systems.
Publisher: Academic Press
ISBN: 1483191303
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
Laminar Flow Forced Convection in Ducts is a sourcebook for compact heat exchanger analytical data. This book describes the analytical solutions for laminar fluid flow and forced convection heat transfer in circular and noncircular pipes, including applicable differential equations and boundary conditions involving velocity and temperature problems of fluid flow. The book also discusses fluid flow—how much power is required to pump fluids through the heat exchanger, as well as the heat transfer—the determination of q" distribution, and the temperature of fluid and walls. The text also analyzes the coolant or heat transfer fluid flows in a nuclear power reactor composed of a bundle of circular section fuel rods located inside a round tube. R.A. Axford addresses fluid flow and heat transfers results for the rod bundle geometry in "Heat Transfer in Rod Bundles." The book also provides an overview and guidelines that can be used for the designer and the applied mathematician. This book is suitable for engineers working in electronics, aerospace, instrumentation, and biomechanics that use cooling or heating exchanges or solar collection systems.
Handbook of Single-Phase Convective Heat Transfer
Author: Sadik Kakaç
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 1268
Book Description
Very Good,No Highlights or Markup,all pages are intact.
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 1268
Book Description
Very Good,No Highlights or Markup,all pages are intact.
Gas Turbine Blade Cooling
Author: Chaitanya D Ghodke
Publisher: SAE International
ISBN: 0768095026
Category : Technology & Engineering
Languages : en
Pages : 238
Book Description
Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.
Publisher: SAE International
ISBN: 0768095026
Category : Technology & Engineering
Languages : en
Pages : 238
Book Description
Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.
Physics Briefs
Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 686
Book Description
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 686
Book Description
Reprint Bulletin - Department of Engineering Research
Author: North Carolina State University. Department of Engineering Research
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 196
Book Description
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 196
Book Description
Analytical Heat Transfer
Author: Je-Chin Han
Publisher: CRC Press
ISBN: 1000597296
Category : Science
Languages : en
Pages : 595
Book Description
Analytical Heat Transfer explains how to analyze and solve conduction, convection, and radiation heat transfer problems. It enables students to tackle complex engineering heat transfer problems prevalent in practice. Covering heat transfer in high-speed flows and unsteady highly turbulent flows, the book also discusses enhanced heat transfer in channels, heat transfer in rotating channels, numerical modeling for turbulent flow heat transfer, and thermally developing heat transfer in a circular tube. The second edition features new content on Duhamel’s superposition method, Green’s function method for transient heat conduction, finite-difference method for steady state and transient heat conduction in cylindrical coordinates, and laminar mixed convection. It includes two new chapters on laminar-to-turbulent transitional heat transfer and turbulent flow heat transfer enhancement, in addition to end-of-chapter problems. The book bridges the gap between basic heat transfer undergraduate courses and advanced heat transfer graduate courses for a single semester of intermediate heat transfer, advanced conduction/radiation heat transfer, or convection heat transfer. Features: Focuses on analyzing and solving classic heat transfer problems in conduction, convection, and radiation Covers 2-D and 3-D view factor evaluation, combined radiation with conduction and/or convection, and gas radiation optically thin and optically thick limits Features updated content and new chapters on mass and heat transfer analogy, thermally developing heat transfer in a circular tube, laminar-turbulent transitional heat transfer, unsteady highly turbulent flows, enhanced heat transfer in channels, heat transfer in rotating channels, and numerical modeling for turbulent flow heat transfer Provides step-by-step mathematical formula derivations, analytical solution procedures, and demonstration examples Includes end-of-chapter problems with an accompanying Solutions Manual for instructors This book is ideal for undergraduate and graduate students studying basic heat transfer and advanced heat transfer.
Publisher: CRC Press
ISBN: 1000597296
Category : Science
Languages : en
Pages : 595
Book Description
Analytical Heat Transfer explains how to analyze and solve conduction, convection, and radiation heat transfer problems. It enables students to tackle complex engineering heat transfer problems prevalent in practice. Covering heat transfer in high-speed flows and unsteady highly turbulent flows, the book also discusses enhanced heat transfer in channels, heat transfer in rotating channels, numerical modeling for turbulent flow heat transfer, and thermally developing heat transfer in a circular tube. The second edition features new content on Duhamel’s superposition method, Green’s function method for transient heat conduction, finite-difference method for steady state and transient heat conduction in cylindrical coordinates, and laminar mixed convection. It includes two new chapters on laminar-to-turbulent transitional heat transfer and turbulent flow heat transfer enhancement, in addition to end-of-chapter problems. The book bridges the gap between basic heat transfer undergraduate courses and advanced heat transfer graduate courses for a single semester of intermediate heat transfer, advanced conduction/radiation heat transfer, or convection heat transfer. Features: Focuses on analyzing and solving classic heat transfer problems in conduction, convection, and radiation Covers 2-D and 3-D view factor evaluation, combined radiation with conduction and/or convection, and gas radiation optically thin and optically thick limits Features updated content and new chapters on mass and heat transfer analogy, thermally developing heat transfer in a circular tube, laminar-turbulent transitional heat transfer, unsteady highly turbulent flows, enhanced heat transfer in channels, heat transfer in rotating channels, and numerical modeling for turbulent flow heat transfer Provides step-by-step mathematical formula derivations, analytical solution procedures, and demonstration examples Includes end-of-chapter problems with an accompanying Solutions Manual for instructors This book is ideal for undergraduate and graduate students studying basic heat transfer and advanced heat transfer.