Experimental and Computational Tools for Single Cell Analysis in Cancer Diagnostics

Experimental and Computational Tools for Single Cell Analysis in Cancer Diagnostics PDF Author: Manibarathi Vaithiyanathan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Experimental and Computational Tools for Single Cell Analysis in Cancer Diagnostics

Experimental and Computational Tools for Single Cell Analysis in Cancer Diagnostics PDF Author: Manibarathi Vaithiyanathan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Computational Methods for Single-Cell Data Analysis

Computational Methods for Single-Cell Data Analysis PDF Author: Guo-Cheng Yuan
Publisher: Humana Press
ISBN: 9781493990566
Category : Science
Languages : en
Pages : 271

Get Book Here

Book Description
This detailed book provides state-of-art computational approaches to further explore the exciting opportunities presented by single-cell technologies. Chapters each detail a computational toolbox aimed to overcome a specific challenge in single-cell analysis, such as data normalization, rare cell-type identification, and spatial transcriptomics analysis, all with a focus on hands-on implementation of computational methods for analyzing experimental data. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Methods for Single-Cell Data Analysis aims to cover a wide range of tasks and serves as a vital handbook for single-cell data analysis.

Introduction to Single Cell Omics

Introduction to Single Cell Omics PDF Author: Xinghua Pan
Publisher: Frontiers Media SA
ISBN: 2889459209
Category :
Languages : en
Pages : 129

Get Book Here

Book Description
Single-cell omics is a progressing frontier that stems from the sequencing of the human genome and the development of omics technologies, particularly genomics, transcriptomics, epigenomics and proteomics, but the sensitivity is now improved to single-cell level. The new generation of methodologies, especially the next generation sequencing (NGS) technology, plays a leading role in genomics related fields; however, the conventional techniques of omics require number of cells to be large, usually on the order of millions of cells, which is hardly accessible in some cases. More importantly, harnessing the power of omics technologies and applying those at the single-cell level are crucial since every cell is specific and unique, and almost every cell population in every systems, derived in either vivo or in vitro, is heterogeneous. Deciphering the heterogeneity of the cell population hence becomes critical for recognizing the mechanism and significance of the system. However, without an extensive examination of individual cells, a massive analysis of cell population would only give an average output of the cells, but neglect the differences among cells. Single-cell omics seeks to study a number of individual cells in parallel for their different dimensions of molecular profile on genome-wide scale, providing unprecedented resolution for the interpretation of both the structure and function of an organ, tissue or other system, as well as the interaction (and communication) and dynamics of single cells or subpopulations of cells and their lineages. Importantly single-cell omics enables the identification of a minor subpopulation of cells that may play a critical role in biological process over a dominant subpolulation such as a cancer and a developing organ. It provides an ultra-sensitive tool for us to clarify specific molecular mechanisms and pathways and reveal the nature of cell heterogeneity. Besides, it also empowers the clinical investigation of patients when facing a very low quantity of cell available for analysis, such as noninvasive cancer screening with circulating tumor cells (CTC), noninvasive prenatal diagnostics (NIPD) and preimplantation genetic test (PGT) for in vitro fertilization. Single-cell omics greatly promotes the understanding of life at a more fundamental level, bring vast applications in medicine. Accordingly, single-cell omics is also called as single-cell analysis or single-cell biology. Within only a couple of years, single-cell omics, especially transcriptomic sequencing (scRNA-seq), whole genome and exome sequencing (scWGS, scWES), has become robust and broadly accessible. Besides the existing technologies, recently, multiplexing barcode design and combinatorial indexing technology, in combination with microfluidic platform exampled by Drop-seq, or even being independent of microfluidic platform but using a regular PCR-plate, enable us a greater capacity of single cell analysis, switching from one single cell to thousands of single cells in a single test. The unique molecular identifiers (UMIs) allow the amplification bias among the original molecules to be corrected faithfully, resulting in a reliable quantitative measurement of omics in single cells. Of late, a variety of single-cell epigenomics analyses are becoming sophisticated, particularly single cell chromatin accessibility (scATAC-seq) and CpG methylation profiling (scBS-seq, scRRBS-seq). High resolution single molecular Fluorescence in situ hybridization (smFISH) and its revolutionary versions (ex. seqFISH, MERFISH, and so on), in addition to the spatial transcriptome sequencing, make the native relationship of the individual cells of a tissue to be in 3D or 4D format visually and quantitatively clarified. On the other hand, CRISPR/cas9 editing-based In vivo lineage tracing methods enable dynamic profile of a whole developmental process to be accurately displayed. Multi-omics analysis facilitates the study of multi-dimensional regulation and relationship of different elements of the central dogma in a single cell, as well as permitting a clear dissection of the complicated omics heterogeneity of a system. Last but not the least, the technology, biological noise, sequence dropout, and batch effect bring a huge challenge to the bioinformatics of single cell omics. While significant progress in the data analysis has been made since then, revolutionary theory and algorithm logics for single cell omics are expected. Indeed, single-cell analysis exert considerable impacts on the fields of biological studies, particularly cancers, neuron and neural system, stem cells, embryo development and immune system; other than that, it also tremendously motivates pharmaceutic RD, clinical diagnosis and monitoring, as well as precision medicine. This book hereby summarizes the recent developments and general considerations of single-cell analysis, with a detailed presentation on selected technologies and applications. Starting with the experimental design on single-cell omics, the book then emphasizes the consideration on heterogeneity of cancer and other systems. It also gives an introduction of the basic methods and key facts for bioinformatics analysis. Secondary, this book provides a summary of two types of popular technologies, the fundamental tools on single-cell isolation, and the developments of single cell multi-omics, followed by descriptions of FISH technologies, though other popular technologies are not covered here due to the fact that they are intensively described here and there recently. Finally, the book illustrates an elastomer-based integrated fluidic circuit that allows a connection between single cell functional studies combining stimulation, response, imaging and measurement, and corresponding single cell sequencing. This is a model system for single cell functional genomics. In addition, it reports a pipeline for single-cell proteomics with an analysis of the early development of Xenopus embryo, a single-cell qRT-PCR application that defined the subpopulations related to cell cycling, and a new method for synergistic assembly of single cell genome with sequencing of amplification product by phi29 DNA polymerase. Due to the tremendous progresses of single-cell omics in recent years, the topics covered here are incomplete, but each individual topic is excellently addressed, significantly interesting and beneficial to scientists working in or affiliated with this field.

Single Cell Analysis

Single Cell Analysis PDF Author: J. Paul Robinson
Publisher: Springer
ISBN: 9811044996
Category : Technology & Engineering
Languages : en
Pages : 277

Get Book Here

Book Description
This book highlights the current state of the art in single cell analysis, an area that involves many fields of science – from clinical hematology, functional analysis and drug screening, to platelet and microparticle analysis, marine biology and fundamental cancer research. This book brings together an eclectic group of current applications, all of which have a significant impact on our current state of knowledge. The authors of these chapters are all pioneering researchers in the field of single cell analysis. The book will not only appeal to those readers more focused on clinical applications, but also those interested in highly technical aspects of the technologies. All of the technologies identified utilize unique applications of photon detection systems.

Revealing Translational and Fundamental Insights Via Computational Analysis of Single-cell Sequencing Data

Revealing Translational and Fundamental Insights Via Computational Analysis of Single-cell Sequencing Data PDF Author: Jessica Lu Zhou
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Single-cell sequencing has emerged as a powerful tool for dissecting cellular heterogeneity and providing cell type-specific biological insights. Single-cell sequencing technologies have rapidly proliferated over the last decade, leading to an explosion of data generated from such experiments. However, several challenges exist in the computational analysis of single-cell sequencing data due to its large and complex nature, including the need for sophisticated statistical methods to distinguish biologically meaningful signals from noise, the integration of single-cell sequencing data with other types of biological information, and the development of scalable and reproducible computational pipelines that can handle the large and complex nature of the data. In this dissertation, I present two distinct projects analyzing single-cell sequencing data. The first is of an analytical nature and tackles a translational question. In this project, I built computational pipelines for processing and analyzing single-nucleus RNA- and ATAC-sequencing datasets generated from the amygdalae of genetically diverse heterogenous stock rats, which were subjected to a behavioral protocol for studying addiction-like behaviors following cocaine self-administration. In doing so, I provide a standard reference for analyzing such data as well as reveal cell type-specific insights into the molecular underpinnings of cocaine addiction. The second project is oriented towards methods development and seeks to understand the fundamental biological question of transcriptional regulation. Here, I developed a statistical framework for simulating and modeling data from single-cell CRISPR regulatory screens and used it to perform a genome-wide interrogation of epistatic-like interactions between enhancer pairs. I found that multiple enhancers act together in a multiplicative fashion with little evidence for interactive effects between them. This work revealed novel insights into the collective behavior of multiple regulatory elements and provides a tool that can be applied to future datasets generated from such experiments. This dissertation exemplifies how computational methods can be applied in different contexts to extract meaning from a variety of single-cell sequencing modalities. By tackling both a translational and fundamental biological question, I have showcased the breadth of what can be revealed by studying single-cell sequencing data and the computational methods necessary to extract this information.

Computational Methods for Single-cell Data Analysis

Computational Methods for Single-cell Data Analysis PDF Author: Guo-Cheng Yuan
Publisher:
ISBN: 9781493990573
Category : Cytology
Languages : en
Pages : 271

Get Book Here

Book Description


Cancer Biomarkers

Cancer Biomarkers PDF Author: Gagan Deep
Publisher: Humana
ISBN: 9781071618981
Category : Medical
Languages : en
Pages : 0

Get Book Here

Book Description
This detailed volume explores numerous methods used in basic science laboratories to characterize cancer-related biomarkers, vital for better managing cancer burden, including cancer risk assessment, cancer diagnosis, determining cancer progression, and therapeutic response. From a radiography method to an examination of single-cell RNA-seq and computational analysis tools in cancer research, this book delves into many techniques that could provide valuable molecular information about the tumor and its microenvironment components. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Cancer Biomarkers: Methods and Protocols offers researchers multiple helpful ways to study cancer-associated molecular biomarkers.

Next Steps for Functional Genomics

Next Steps for Functional Genomics PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309676738
Category : Science
Languages : en
Pages : 201

Get Book Here

Book Description
One of the holy grails in biology is the ability to predict functional characteristics from an organism's genetic sequence. Despite decades of research since the first sequencing of an organism in 1995, scientists still do not understand exactly how the information in genes is converted into an organism's phenotype, its physical characteristics. Functional genomics attempts to make use of the vast wealth of data from "-omics" screens and projects to describe gene and protein functions and interactions. A February 2020 workshop was held to determine research needs to advance the field of functional genomics over the next 10-20 years. Speakers and participants discussed goals, strategies, and technical needs to allow functional genomics to contribute to the advancement of basic knowledge and its applications that would benefit society. This publication summarizes the presentations and discussions from the workshop.

Single-cell Sequencing and Methylation

Single-cell Sequencing and Methylation PDF Author: Buwei Yu
Publisher: Springer
ISBN: 9789811544934
Category : Science
Languages : en
Pages : 247

Get Book Here

Book Description
With the rapid development of biotechnologies, single-cell sequencing has become an important tool for understanding the molecular mechanisms of diseases, defining cellular heterogeneities and characteristics, and identifying intercellular communications and single-cell-based biomarkers. Providing a clear overview of the clinical applications, the book presents state-of-the-art information on immune cell function, cancer progression, infection, and inflammation gained from single-cell DNA or RNA sequencing. Furthermore, it explores the role of target gene methylation in the pathogenesis of diseases, with a focus on respiratory cancer, infection and chronic diseases. As such it is a valuable resource for clinical researchers and physicians, allowing them to refresh their knowledge and improve early diagnosis and therapy for patients.

Precision Medicine for Investigators, Practitioners and Providers

Precision Medicine for Investigators, Practitioners and Providers PDF Author: Joel Faintuch
Publisher: Academic Press
ISBN: 0128191791
Category : Science
Languages : en
Pages : 640

Get Book Here

Book Description
Precision Medicine for Investigators, Practitioners and Providers addresses the needs of investigators by covering the topic as an umbrella concept, from new drug trials to wearable diagnostic devices, and from pediatrics to psychiatry in a manner that is up-to-date and authoritative. Sections include broad coverage of concerning disease groups and ancillary information about techniques, resources and consequences. Moreover, each chapter follows a structured blueprint, so that multiple, essential items are not overlooked. Instead of simply concentrating on a limited number of extensive and pedantic coverages, scholarly diagrams are also included. Provides a three-pronged approach to precision medicine that is focused on investigators, practitioners and healthcare providers Covers disease groups and ancillary information about techniques, resources and consequences Follows a structured blueprint, ensuring essential chapters items are not overlooked