Author: Dean G. Duffy
Publisher: CRC Press
ISBN: 1420035142
Category : Mathematics
Languages : en
Pages : 727
Book Description
Transform methods provide a bridge between the commonly used method of separation of variables and numerical techniques for solving linear partial differential equations. While in some ways similar to separation of variables, transform methods can be effective for a wider class of problems. Even when the inverse of the transform cannot be found ana
Transform Methods for Solving Partial Differential Equations
Author: Dean G. Duffy
Publisher: CRC Press
ISBN: 1420035142
Category : Mathematics
Languages : en
Pages : 727
Book Description
Transform methods provide a bridge between the commonly used method of separation of variables and numerical techniques for solving linear partial differential equations. While in some ways similar to separation of variables, transform methods can be effective for a wider class of problems. Even when the inverse of the transform cannot be found ana
Publisher: CRC Press
ISBN: 1420035142
Category : Mathematics
Languages : en
Pages : 727
Book Description
Transform methods provide a bridge between the commonly used method of separation of variables and numerical techniques for solving linear partial differential equations. While in some ways similar to separation of variables, transform methods can be effective for a wider class of problems. Even when the inverse of the transform cannot be found ana
Applied Mechanics Reviews
Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 568
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 568
Book Description
Geophysical Abstracts, 188 January-March 1962
Author:
Publisher:
ISBN:
Category : Earth sciences
Languages : en
Pages : 854
Book Description
Publisher:
ISBN:
Category : Earth sciences
Languages : en
Pages : 854
Book Description
Geophysical Abstracts ...
Author:
Publisher:
ISBN:
Category : Geophysics
Languages : en
Pages : 1702
Book Description
Publisher:
ISBN:
Category : Geophysics
Languages : en
Pages : 1702
Book Description
Elastic Wave Propagation
Author: F. McCarthy
Publisher: Elsevier
ISBN: 1483290662
Category : Technology & Engineering
Languages : en
Pages : 663
Book Description
This volume contains a timely collection of research papers on the latest developments in the ever-increasing use of elastic waves in a variety of contexts. There are reports on wave-propagation in various types of media: in both isotropic and anisotropic bodies; in homogeneous and inhomogeneous media; in media with cracks or inclusions in random media; and in layered composites.The bulk of the papers are concerned with propagation in elastic media, but also included are viscoelastic, thermoelastic and magneto-electroelastic wave propagation, as well as waves in porous and piezo-electric bodies. Consideration is given to propagation in bodies as diverse as stretched elastic strings to surfaces such as thin walled cylinders, and thin films under stress. Applications considered include the determination of the depth of cracks; analysis of ground motions generated by a finite fault in seismology; surface wave spreading on piezo-electric solids; and dynamical stress intensity factors. Most of the papers are theoretical in nature, and many are complemented by numerical studies. Also included are a general survey on experimental techniques, and reports on experimental work.The volume will be of interest to those who do theoretical studies of elastic wave propagation and to those who apply elastic waves whether in seismology, non-destructive testing, the fabrication of devices or underwater acoustics, etc.
Publisher: Elsevier
ISBN: 1483290662
Category : Technology & Engineering
Languages : en
Pages : 663
Book Description
This volume contains a timely collection of research papers on the latest developments in the ever-increasing use of elastic waves in a variety of contexts. There are reports on wave-propagation in various types of media: in both isotropic and anisotropic bodies; in homogeneous and inhomogeneous media; in media with cracks or inclusions in random media; and in layered composites.The bulk of the papers are concerned with propagation in elastic media, but also included are viscoelastic, thermoelastic and magneto-electroelastic wave propagation, as well as waves in porous and piezo-electric bodies. Consideration is given to propagation in bodies as diverse as stretched elastic strings to surfaces such as thin walled cylinders, and thin films under stress. Applications considered include the determination of the depth of cracks; analysis of ground motions generated by a finite fault in seismology; surface wave spreading on piezo-electric solids; and dynamical stress intensity factors. Most of the papers are theoretical in nature, and many are complemented by numerical studies. Also included are a general survey on experimental techniques, and reports on experimental work.The volume will be of interest to those who do theoretical studies of elastic wave propagation and to those who apply elastic waves whether in seismology, non-destructive testing, the fabrication of devices or underwater acoustics, etc.
Fundamentals of Seismic Wave Propagation
Author: Chris Chapman
Publisher: Cambridge University Press
ISBN: 9781139451635
Category : Science
Languages : en
Pages : 646
Book Description
Fundamentals of Seismic Wave Propagation, published in 2004, presents a comprehensive introduction to the propagation of high-frequency body-waves in elastodynamics. The theory of seismic wave propagation in acoustic, elastic and anisotropic media is developed to allow seismic waves to be modelled in complex, realistic three-dimensional Earth models. This book provides a consistent and thorough development of modelling methods widely used in elastic wave propagation ranging from the whole Earth, through regional and crustal seismology, exploration seismics to borehole seismics, sonics and ultrasonics. Particular emphasis is placed on developing a consistent notation and approach throughout, which highlights similarities and allows more complicated methods and extensions to be developed without difficulty. This book is intended as a text for graduate courses in theoretical seismology, and as a reference for all academic and industrial seismologists using numerical modelling methods. Exercises and suggestions for further reading are included in each chapter.
Publisher: Cambridge University Press
ISBN: 9781139451635
Category : Science
Languages : en
Pages : 646
Book Description
Fundamentals of Seismic Wave Propagation, published in 2004, presents a comprehensive introduction to the propagation of high-frequency body-waves in elastodynamics. The theory of seismic wave propagation in acoustic, elastic and anisotropic media is developed to allow seismic waves to be modelled in complex, realistic three-dimensional Earth models. This book provides a consistent and thorough development of modelling methods widely used in elastic wave propagation ranging from the whole Earth, through regional and crustal seismology, exploration seismics to borehole seismics, sonics and ultrasonics. Particular emphasis is placed on developing a consistent notation and approach throughout, which highlights similarities and allows more complicated methods and extensions to be developed without difficulty. This book is intended as a text for graduate courses in theoretical seismology, and as a reference for all academic and industrial seismologists using numerical modelling methods. Exercises and suggestions for further reading are included in each chapter.
Elastic Waves in the Earth
Author: Walter L. Pilant
Publisher: Elsevier
ISBN: 0444601945
Category : Science
Languages : en
Pages : 506
Book Description
Elastic Waves in the Earth provides information on the relationship between seismology and geophysics and their general aspects. The book offers elastodynamic equations and derivative equations that can be used in the propagation of elastic waves. It also covers major topics in detail, such as the fundamentals of elastodynamics; the Lamb's problem, which includes the Cagniard-de Hoop theory; rays and modes in a radially inhomogeneous earth and in multilayered media, which includes the Thomson-Haskell theory; the elastic wave dissipation; the seismic source and noise; and the seismographs. The book consists of 33 chapters. The first 16 chapters include basic material related to the propagation of elastic waves. Topics covered by these chapters include scalars, vectors, and tensors in cartesian coordinates, stress and strain analysis, equations of elasticity and motion, plane waves, Rayleigh waves, plane-wave theory, and fluid-fluid and solid-solid interfaces. The second half of the book covers various ray and mode theories, elastic wave dissipation, and the observations and theories of seismic source and seismic noise. It concludes by discussing earthquake seismology and different seismographs, like the pendulum seismometer and the strain seismometer.
Publisher: Elsevier
ISBN: 0444601945
Category : Science
Languages : en
Pages : 506
Book Description
Elastic Waves in the Earth provides information on the relationship between seismology and geophysics and their general aspects. The book offers elastodynamic equations and derivative equations that can be used in the propagation of elastic waves. It also covers major topics in detail, such as the fundamentals of elastodynamics; the Lamb's problem, which includes the Cagniard-de Hoop theory; rays and modes in a radially inhomogeneous earth and in multilayered media, which includes the Thomson-Haskell theory; the elastic wave dissipation; the seismic source and noise; and the seismographs. The book consists of 33 chapters. The first 16 chapters include basic material related to the propagation of elastic waves. Topics covered by these chapters include scalars, vectors, and tensors in cartesian coordinates, stress and strain analysis, equations of elasticity and motion, plane waves, Rayleigh waves, plane-wave theory, and fluid-fluid and solid-solid interfaces. The second half of the book covers various ray and mode theories, elastic wave dissipation, and the observations and theories of seismic source and seismic noise. It concludes by discussing earthquake seismology and different seismographs, like the pendulum seismometer and the strain seismometer.
Geophysical Abstracts, 189 April-June 1962
Author:
Publisher:
ISBN:
Category : Earth sciences
Languages : en
Pages : 172
Book Description
Publisher:
ISBN:
Category : Earth sciences
Languages : en
Pages : 172
Book Description
Elastic wave propagation in transversely isotropic media
Author: R.C. Payton
Publisher: Springer Science & Business Media
ISBN: 9400968663
Category : Science
Languages : en
Pages : 203
Book Description
In this monograph I record those parts of the theory of transverse isotropic elastic wave propagation which lend themselves to an exact treatment, within the framework of linear theory. Emphasis is placed on transient wave motion problems in two- and three-dimensional unbounded and semibounded solids for which explicit results can be obtained, without resort to approximate methods of integration. The mathematical techniques used, many of which appear here in book form for the first time, will be of interest to applied mathematicians, engeneers and scientists whose specialty includes crystal acoustics, crystal optics, magnetogasdynamics, dislocation theory, seismology and fibre wound composites. My interest in the subject of anisotropic wave motion had its origin in the study of small deformations superposed on large deformations of elastic solids. By varying the initial stretch in a homogeneously deformed solid, it is possible to synthesize aniso tropic materials whose elastic parameters vary continuously. The range of the parameter variation is limited by stability considerations in the case of small deformations super posed on large deformation problems and (what is essentially the same thing) by the of hyperbolicity (solids whose parameters allow wave motion) for anisotropic notion solids. The full implication of hyperbolicity for anisotropic elastic solids has never been previously examined, and even now the constraints which it imposes on the elasticity constants have only been examined for the class of transversely isotropic (hexagonal crystals) materials.
Publisher: Springer Science & Business Media
ISBN: 9400968663
Category : Science
Languages : en
Pages : 203
Book Description
In this monograph I record those parts of the theory of transverse isotropic elastic wave propagation which lend themselves to an exact treatment, within the framework of linear theory. Emphasis is placed on transient wave motion problems in two- and three-dimensional unbounded and semibounded solids for which explicit results can be obtained, without resort to approximate methods of integration. The mathematical techniques used, many of which appear here in book form for the first time, will be of interest to applied mathematicians, engeneers and scientists whose specialty includes crystal acoustics, crystal optics, magnetogasdynamics, dislocation theory, seismology and fibre wound composites. My interest in the subject of anisotropic wave motion had its origin in the study of small deformations superposed on large deformations of elastic solids. By varying the initial stretch in a homogeneously deformed solid, it is possible to synthesize aniso tropic materials whose elastic parameters vary continuously. The range of the parameter variation is limited by stability considerations in the case of small deformations super posed on large deformation problems and (what is essentially the same thing) by the of hyperbolicity (solids whose parameters allow wave motion) for anisotropic notion solids. The full implication of hyperbolicity for anisotropic elastic solids has never been previously examined, and even now the constraints which it imposes on the elasticity constants have only been examined for the class of transversely isotropic (hexagonal crystals) materials.
Elastic Waves in Anisotropic Laminates
Author: G.R. Liu
Publisher: CRC Press
ISBN: 9781420040999
Category : Technology & Engineering
Languages : en
Pages : 474
Book Description
Ultrasonic non-destructive evaluation (NDE) plays an increasingly important role in determining properties and detecting defects in composite materials, and the analysis of wave behavior is crucial to effectively using NDE techniques. The complexity of elastic wave propagation in anisotropic media has led to a reliance on numerical methods of analysis-methods that are often quite time-consuming and whose results yield even further difficulties in extracting explicit phenomena and characteristics. Innovative and insightful, Elastic Waves in Anisotropic Laminates establishes a set of high-performance, analytical-numerical methods for elastic wave analysis of anisotropic layered structures. The treatment furnishes a comprehensive introduction, sound theoretical development, and applications to smart materials, plates, and shells. The techniques, detailed in both the time and frequency domains, include methods that combine the finite element method (FEM) with the Fourier transform approach and the strip element method (SEM). These -methods can also be used for expediently finding the Green's function for anisotropic laminates useful for inverse problems related to wave propagation, and methods for inverse analyses, including conjugate gradient methods, and genetic algorithms are also introduced. The text is complemented by many examples generated using software codes based on the techniques developed. Filled with charts and illustrations, Elastic Waves in Anisotropic Laminates is accessible even to readers from non-engineering backgrounds and offers a unique opportunity to discover methods that can lead to an understanding of the dynamic characteristics and wave motion behaviors of advanced composite materials.
Publisher: CRC Press
ISBN: 9781420040999
Category : Technology & Engineering
Languages : en
Pages : 474
Book Description
Ultrasonic non-destructive evaluation (NDE) plays an increasingly important role in determining properties and detecting defects in composite materials, and the analysis of wave behavior is crucial to effectively using NDE techniques. The complexity of elastic wave propagation in anisotropic media has led to a reliance on numerical methods of analysis-methods that are often quite time-consuming and whose results yield even further difficulties in extracting explicit phenomena and characteristics. Innovative and insightful, Elastic Waves in Anisotropic Laminates establishes a set of high-performance, analytical-numerical methods for elastic wave analysis of anisotropic layered structures. The treatment furnishes a comprehensive introduction, sound theoretical development, and applications to smart materials, plates, and shells. The techniques, detailed in both the time and frequency domains, include methods that combine the finite element method (FEM) with the Fourier transform approach and the strip element method (SEM). These -methods can also be used for expediently finding the Green's function for anisotropic laminates useful for inverse problems related to wave propagation, and methods for inverse analyses, including conjugate gradient methods, and genetic algorithms are also introduced. The text is complemented by many examples generated using software codes based on the techniques developed. Filled with charts and illustrations, Elastic Waves in Anisotropic Laminates is accessible even to readers from non-engineering backgrounds and offers a unique opportunity to discover methods that can lead to an understanding of the dynamic characteristics and wave motion behaviors of advanced composite materials.