Evolutionary MOSFET Structure and Channel Design for Nanoscale CMOS Technology

Evolutionary MOSFET Structure and Channel Design for Nanoscale CMOS Technology PDF Author: Byron Ho
Publisher:
ISBN:
Category :
Languages : en
Pages : 198

Get Book Here

Book Description
The constant pace of CMOS technology scaling has enabled continuous improvement in integrated-circuit cost and functionality, generating a new paradigm shift towards mobile computing. However, as the MOSFET dimensions are scaled below 30nm, electrostatic integrity and device variability become harder to control, degrading circuit performance. In order to overcome these issues, device engineers have started transitioning from the conventional planar bulk MOSFET toward revolutionary thin-body transistor structures such as the FinFET or fully-depleted silicon-on-insulator (FDSOI) MOSFET. While these alternatives appear to be elegant solutions, they require increased process complexity and/or more expensive starting substrates, making development and manufacturing costs a concern. For certain applications (such as mobile electronics), cost is still an important factor, inhibiting the quick adoption of the FinFET and FDSOI MOSFET structures while providing an opportunity to extend the competitiveness of planar bulk-silicon CMOS. A segmented-channel MOSFET (SegFET) design, which combines the benefits of both planar bulk MOSFETs (i.e. lower process complexity and/or cost) and thin-body transistor structures (i.e. improved electrostatic integrity), can provide an evolutionary pathway to enable the continued scaling of planar bulk technology below 20nm. In this work, experimental results comparing SegFETs and planar MOSFETs show suppressed short-channel effects and comparable on-state current (despite halving the effective device width). In addition, three-dimensional device simulations were used to optimize and benchmark the bulk SegFET and FinFET designs. Compared to the FinFET design, the results indicate that the SegFET can achieve similar on-state current performance and intrinsic delay (for the same channel stripe pitch) at a lower height/width aspect ratio and less aggressive retrograde channel doping gradient for improved manufacturability, making it a promising candidate for continued bulk-silicon CMOS transistor scaling. High-mobility channels are also investigated in this work for their potential to improve MOSFET performance, but issues with physical material parameters (electrostatic control, strain effects, etc.) and process integration necessitate careful design when implementing these materials in the MOSFET channel regions. Because germanium (Ge) and silicon-germanium (Si1-xGex) alloys are Group IV materials like silicon (Si), and since these materials are already extensively used in mainstream volume integrated-circuit manufacturing, they represent the most straightforward path to integrating high-mobility channels on silicon. Device simulations are used to optimize Si1-xGex channel thickness and Ge concentration for Si1-xGex/Si heterostructure p-channel MOSFETs; it is found that a thin (

Evolutionary MOSFET Structure and Channel Design for Nanoscale CMOS Technology

Evolutionary MOSFET Structure and Channel Design for Nanoscale CMOS Technology PDF Author: Byron Ho
Publisher:
ISBN:
Category :
Languages : en
Pages : 198

Get Book Here

Book Description
The constant pace of CMOS technology scaling has enabled continuous improvement in integrated-circuit cost and functionality, generating a new paradigm shift towards mobile computing. However, as the MOSFET dimensions are scaled below 30nm, electrostatic integrity and device variability become harder to control, degrading circuit performance. In order to overcome these issues, device engineers have started transitioning from the conventional planar bulk MOSFET toward revolutionary thin-body transistor structures such as the FinFET or fully-depleted silicon-on-insulator (FDSOI) MOSFET. While these alternatives appear to be elegant solutions, they require increased process complexity and/or more expensive starting substrates, making development and manufacturing costs a concern. For certain applications (such as mobile electronics), cost is still an important factor, inhibiting the quick adoption of the FinFET and FDSOI MOSFET structures while providing an opportunity to extend the competitiveness of planar bulk-silicon CMOS. A segmented-channel MOSFET (SegFET) design, which combines the benefits of both planar bulk MOSFETs (i.e. lower process complexity and/or cost) and thin-body transistor structures (i.e. improved electrostatic integrity), can provide an evolutionary pathway to enable the continued scaling of planar bulk technology below 20nm. In this work, experimental results comparing SegFETs and planar MOSFETs show suppressed short-channel effects and comparable on-state current (despite halving the effective device width). In addition, three-dimensional device simulations were used to optimize and benchmark the bulk SegFET and FinFET designs. Compared to the FinFET design, the results indicate that the SegFET can achieve similar on-state current performance and intrinsic delay (for the same channel stripe pitch) at a lower height/width aspect ratio and less aggressive retrograde channel doping gradient for improved manufacturability, making it a promising candidate for continued bulk-silicon CMOS transistor scaling. High-mobility channels are also investigated in this work for their potential to improve MOSFET performance, but issues with physical material parameters (electrostatic control, strain effects, etc.) and process integration necessitate careful design when implementing these materials in the MOSFET channel regions. Because germanium (Ge) and silicon-germanium (Si1-xGex) alloys are Group IV materials like silicon (Si), and since these materials are already extensively used in mainstream volume integrated-circuit manufacturing, they represent the most straightforward path to integrating high-mobility channels on silicon. Device simulations are used to optimize Si1-xGex channel thickness and Ge concentration for Si1-xGex/Si heterostructure p-channel MOSFETs; it is found that a thin (

Advanced Nanoscale MOSFET Architectures

Advanced Nanoscale MOSFET Architectures PDF Author: Kalyan Biswas
Publisher: John Wiley & Sons
ISBN: 1394188951
Category : Technology & Engineering
Languages : en
Pages : 340

Get Book Here

Book Description
Comprehensive reference on the fundamental principles and basic physics dictating metal–oxide–semiconductor field-effect transistor (MOSFET) operation Advanced Nanoscale MOSFET Architectures provides an in-depth review of modern metal–oxide–semiconductor field-effect transistor (MOSFET) device technologies and advancements, with information on their operation, various architectures, fabrication, materials, modeling and simulation methods, circuit applications, and other aspects related to nanoscale MOSFET technology. The text begins with an introduction to the foundational technology before moving on to describe challenges associated with the scaling of nanoscale devices. Other topics covered include device physics and operation, strain engineering for highly scaled MOSFETs, tunnel FET, graphene based field effect transistors, and more. The text also compares silicon bulk and devices, nanosheet transistors and introduces low-power circuit design using advanced MOSFETs. Additional topics covered include: High-k gate dielectrics and metal gate electrodes for multi-gate MOSFETs, covering gate stack processing and metal gate modification Strain engineering in 3D complementary metal-oxide semiconductors (CMOS) and its scaling impact, and strain engineering in silicon–germanium (SiGe) FinFET and its challenges and future perspectives TCAD simulation of multi-gate MOSFET, covering model calibration and device performance for analog and RF applications Description of the design of an analog amplifier circuit using digital CMOS technology of SCL for ultra-low power VLSI applications Advanced Nanoscale MOSFET Architectures helps readers understand device physics and design of new structures and material compositions, making it an important resource for the researchers and professionals who are carrying out research in the field, along with students in related programs of study.

Nanoscale Bulk MOSFET Design and Process Technology for Reduced Variability

Nanoscale Bulk MOSFET Design and Process Technology for Reduced Variability PDF Author: Xin Sun
Publisher:
ISBN:
Category :
Languages : en
Pages : 136

Get Book Here

Book Description


Nanometer CMOS

Nanometer CMOS PDF Author: Frank Schwierz
Publisher: Pan Stanford Publishing
ISBN: 9814241083
Category : Technology & Engineering
Languages : en
Pages : 349

Get Book Here

Book Description
This book presents the material necessary for understanding the physics, operation, design, and performance of modern MOSFETs with nanometer dimensions. Other topics covered include high-k dielectrics and mobility enhancement techniques, MOSFETs for RF (radio frequency) applications, MOSFET fabrication technology.

Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications

Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications PDF Author: Jacopo Franco
Publisher: Springer Science & Business Media
ISBN: 9400776632
Category : Technology & Engineering
Languages : en
Pages : 203

Get Book Here

Book Description
Due to the ever increasing electric fields in scaled CMOS devices, reliability is becoming a showstopper for further scaled technology nodes. Although several groups have already demonstrated functional Si channel devices with aggressively scaled Equivalent Oxide Thickness (EOT) down to 5Å, a 10 year reliable device operation cannot be guaranteed anymore due to severe Negative Bias Temperature Instability. This book focuses on the reliability of the novel (Si)Ge channel quantum well pMOSFET technology. This technology is being considered for possible implementation in next CMOS technology nodes, thanks to its benefit in terms of carrier mobility and device threshold voltage tuning. We observe that it also opens a degree of freedom for device reliability optimization. By properly tuning the device gate stack, sufficiently reliable ultra-thin EOT devices with a 10 years lifetime at operating conditions are demonstrated. The extensive experimental datasets collected on a variety of processed 300mm wafers and presented here show the reliability improvement to be process - and architecture-independent and, as such, readily transferable to advanced device architectures as Tri-Gate (finFET) devices. We propose a physical model to understand the intrinsically superior reliability of the MOS system consisting of a Ge-based channel and a SiO2/HfO2 dielectric stack. The improved reliability properties here discussed strongly support (Si)Ge technology as a clear frontrunner for future CMOS technology nodes.

Advanced Source/drain and Contact Design for Nanoscale CMOS

Advanced Source/drain and Contact Design for Nanoscale CMOS PDF Author: Reinaldo A. Vega
Publisher:
ISBN:
Category :
Languages : en
Pages : 268

Get Book Here

Book Description


Layout Techniques for MOSFETs

Layout Techniques for MOSFETs PDF Author: Salvador Pinillos Gimenez
Publisher: Morgan & Claypool Publishers
ISBN: 1627054820
Category : Technology & Engineering
Languages : en
Pages : 83

Get Book Here

Book Description
This book aims at describing in detail the different layout techniques for remarkably boosting the electrical performance and the ionizing radiation tolerance of planar Metal-Oxide-Semiconductor (MOS) Field Effect Transistors (MOSFETs) without adding any costs to the current planar Complementary MOS (CMOS) integrated circuits (ICs) manufacturing processes. These innovative layout styles are based on pn junctions engineering between the drain/source and channel regions or simply MOSFET gate layout change. These interesting layout structures are capable of incorporating new effects in the MOSFET structures, such as the Longitudinal Corner Effect (LCE), the Parallel connection of MOSFETs with Different Channel Lengths Effect (PAMDLE), the Deactivation of the Parallel MOSFETs in the Bird's Beak Regions (DEPAMBBRE), and the Drain Leakage Current Reduction Effect (DLECRE), which are still seldom explored by the semiconductor and CMOS ICs industries. Several three-dimensional (3D) numerical simulations and experimental works are referenced in this book to show how these layout techniques can help the designers to reach the analog and digital CMOS ICs specifications with no additional cost. Furthermore, the electrical performance and ionizing radiation robustness of the analog and digital CMOS ICs can significantly be increased by using this gate layout approach.

Advanced Materials and Structures for Nanoscale CMOS Devices

Advanced Materials and Structures for Nanoscale CMOS Devices PDF Author: Dae-Won Ha
Publisher:
ISBN:
Category :
Languages : en
Pages : 334

Get Book Here

Book Description


Proceedings of Mechanical Engineering Research Day 2017

Proceedings of Mechanical Engineering Research Day 2017 PDF Author: Mohd Fadzli Bin Abdollah
Publisher: Centre for Advanced Research on Energy
ISBN: 9670257883
Category :
Languages : en
Pages : 510

Get Book Here

Book Description
This e-book is a compilation of papers presented at the Mechanical Engineering Research Day 2017 (MERD'17) - Melaka, Malaysia on 30 March 2017.

MOSFET Modeling for Circuit Analysis and Design

MOSFET Modeling for Circuit Analysis and Design PDF Author: Carlos Galup-Montoro
Publisher: World Scientific
ISBN: 9812568107
Category : Technology & Engineering
Languages : en
Pages : 445

Get Book Here

Book Description
This is the first book dedicated to the next generation of MOSFET models. Addressed to circuit designers with an in-depth treatment that appeals to device specialists, the book presents a fresh view of compact modeling, having completely abandoned the regional modeling approach.Both an overview of the basic physics theory required to build compact MOSFET models and a unified treatment of inversion-charge and surface-potential models are provided. The needs of digital, analog and RF designers as regards the availability of simple equations for circuit designs are taken into account. Compact expressions for hand analysis or for automatic synthesis, valid in all operating regions, are presented throughout the book. All the main expressions for computer simulation used in the new generation compact models are derived.Since designers in advanced technologies are increasingly concerned with fluctuations, the modeling of fluctuations is strongly emphasized. A unified approach for both space (matching) and time (noise) fluctuations is introduced.