Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture

Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This document summarizes the work performed on Cooperative Agreement DE-FE0000465,?Evaluation of Dry Sorbent Technology for Pre-Combustion CO2 Capture,? during the period of performance of January 1, 2010 through September 30, 2013. This project involves the development of a novel technology that combines a dry sorbent-based carbon capture process with the water-gas-shift reaction for separating CO2 from syngas. The project objectives were to model, develop, synthesize and screen sorbents for CO2 capture from gasified coal streams. The project was funded by the DOE National Energy Technology Laboratory with URS as the prime contractor. Illinois Clean Coal Institute and The University of Illinois Urbana-Champaign were project co-funders. The objectives of this project were to identify and evaluate sorbent materials and concepts that were suitable for capturing carbon dioxide (CO2) from warm/hot water-gas-shift (WGS) systems under conditions that minimize energy penalties and provide continuous gas flow to advanced synthesis gas combustion and processing systems. Objectives included identifying and evaluating sorbents that efficiently capture CO2 from a gas stream containing CO2, carbon monoxide (CO), and hydrogen (H2) at temperatures as high as 650 °C and pressures of 400-600 psi. After capturing the CO2, the sorbents would ideally be regenerated using steam, or other condensable purge vapors. Results from the adsorption and regeneration testing were used to determine an optimal design scheme for a sorbent enhanced water gas shift (SEWGS) process and evaluate the technical and economic viability of the dry sorbent approach for CO2 capture. Project work included computational modeling, which was performed to identify key sorbent properties for the SEWGS process. Thermodynamic modeling was used to identify optimal physical properties for sorbents and helped down-select from the universe of possible sorbent materials to seven that were deemed thermodynamically viable for the process. Molecular modeling was used to guide sorbent synthesis through first principles simulations of adsorption and regeneration. Molecular dynamics simulations also modeled the impact of gas phase impurities common in gasified coal streams (e.g., H2S) on the adsorption process. The role of inert dopants added for mechanical durability to active sorbent materials was also investigated through molecular simulations. Process simulations were conducted throughout the project to help determine the overall feasibility of the process and to help guide laboratory operating conditions. A large component of the program was the development of sorbent synthesis methods. Three different approaches were used: mechanical alloying (MA), flame spray pyrolysis (FSP), and ultrasonic spray pyrolysis (USP). Sorbents were characterized by a host of analytical techniques and screened for SEWGS performance using a thermogravimetric analyzer (TGA). A feedback loop from screening efforts to sorbent synthesis was established and used throughout the project lifetime. High temperature, high pressure reactor (HTPR) systems were constructed to test the sorbents at conditions mimicking the SEWGS process as identified through process modeling. These experiments were conducted at the laboratory scale to examine sorbents for their CO2 capacity, conversion of CO to CO2, and impacts of adsorption and regeneration conditions, and syngas composition (including impurities and H2O:CO ratio). Results from the HTPR testing showed sorbents with as high as 0.4 g{sub CO2}/g{sub sorbent} capacity with the ability to initially shift the WGS completely towards CO2/H2. A longer term experiment with a simple syngas matrix and N2/steam regeneration stream showed a USP sorbent to be stable through 50 adsorption-regeneration cycles, though the sorbent tested had a somewhat diminished initial capacity. The program culminated in a technoeconomic assessment in which two different approaches were taken; one a ...

Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture

Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This document summarizes the work performed on Cooperative Agreement DE-FE0000465,?Evaluation of Dry Sorbent Technology for Pre-Combustion CO2 Capture,? during the period of performance of January 1, 2010 through September 30, 2013. This project involves the development of a novel technology that combines a dry sorbent-based carbon capture process with the water-gas-shift reaction for separating CO2 from syngas. The project objectives were to model, develop, synthesize and screen sorbents for CO2 capture from gasified coal streams. The project was funded by the DOE National Energy Technology Laboratory with URS as the prime contractor. Illinois Clean Coal Institute and The University of Illinois Urbana-Champaign were project co-funders. The objectives of this project were to identify and evaluate sorbent materials and concepts that were suitable for capturing carbon dioxide (CO2) from warm/hot water-gas-shift (WGS) systems under conditions that minimize energy penalties and provide continuous gas flow to advanced synthesis gas combustion and processing systems. Objectives included identifying and evaluating sorbents that efficiently capture CO2 from a gas stream containing CO2, carbon monoxide (CO), and hydrogen (H2) at temperatures as high as 650 °C and pressures of 400-600 psi. After capturing the CO2, the sorbents would ideally be regenerated using steam, or other condensable purge vapors. Results from the adsorption and regeneration testing were used to determine an optimal design scheme for a sorbent enhanced water gas shift (SEWGS) process and evaluate the technical and economic viability of the dry sorbent approach for CO2 capture. Project work included computational modeling, which was performed to identify key sorbent properties for the SEWGS process. Thermodynamic modeling was used to identify optimal physical properties for sorbents and helped down-select from the universe of possible sorbent materials to seven that were deemed thermodynamically viable for the process. Molecular modeling was used to guide sorbent synthesis through first principles simulations of adsorption and regeneration. Molecular dynamics simulations also modeled the impact of gas phase impurities common in gasified coal streams (e.g., H2S) on the adsorption process. The role of inert dopants added for mechanical durability to active sorbent materials was also investigated through molecular simulations. Process simulations were conducted throughout the project to help determine the overall feasibility of the process and to help guide laboratory operating conditions. A large component of the program was the development of sorbent synthesis methods. Three different approaches were used: mechanical alloying (MA), flame spray pyrolysis (FSP), and ultrasonic spray pyrolysis (USP). Sorbents were characterized by a host of analytical techniques and screened for SEWGS performance using a thermogravimetric analyzer (TGA). A feedback loop from screening efforts to sorbent synthesis was established and used throughout the project lifetime. High temperature, high pressure reactor (HTPR) systems were constructed to test the sorbents at conditions mimicking the SEWGS process as identified through process modeling. These experiments were conducted at the laboratory scale to examine sorbents for their CO2 capacity, conversion of CO to CO2, and impacts of adsorption and regeneration conditions, and syngas composition (including impurities and H2O:CO ratio). Results from the HTPR testing showed sorbents with as high as 0.4 g{sub CO2}/g{sub sorbent} capacity with the ability to initially shift the WGS completely towards CO2/H2. A longer term experiment with a simple syngas matrix and N2/steam regeneration stream showed a USP sorbent to be stable through 50 adsorption-regeneration cycles, though the sorbent tested had a somewhat diminished initial capacity. The program culminated in a technoeconomic assessment in which two different approaches were taken; one a ...

Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture

Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 265

Get Book Here

Book Description
ADA completed a DOE-sponsored program titled Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture under program DE-FE0004343. During this program, sorbents were analyzed for use in a post-combustion CO2 capture process. A supported amine sorbent was selected based upon superior performance to adsorb a greater amount of CO2 than the activated carbon sorbents tested. When the most ideal sorbent at the time was selected, it was characterized and used to create a preliminary techno-economic analysis (TEA). A preliminary 550 MW coal-fired power plant using Illinois #6 bituminous coal was designed with a solid sorbent CO2 capture system using the selected supported amine sorbent to both facilitate the TEA and to create the necessary framework to scale down the design to a 1 MWe equivalent slipstream pilot facility. The preliminary techno-economic analysis showed promising results and potential for improved performance for CO2 capture compared to conventional MEA systems. As a result, a 1 MWe equivalent solid sorbent system was designed, constructed, and then installed at a coal-fired power plant in Alabama. The pilot was designed to capture 90% of the CO2 from the incoming flue gas at 1 MWe net electrical generating equivalent. Testing was not possible at the design conditions due to changes in sorbent handling characteristics at post-regenerator temperatures that were not properly incorporated into the pilot design. Thus, severe pluggage occurred at nominally 60% of the design sorbent circulation rate with heated sorbent, although no handling issues were noted when the system was operated prior to bringing the regenerator to operating temperature. Testing within the constraints of the pilot plant resulted in 90% capture of the incoming CO2 at a flow rate equivalent of 0.2 to 0.25 MWe net electrical generating equivalent. The reduction in equivalent flow rate at 90% capture was primarily the result of sorbent circulation limitations at operating temperatures combined with pre-loading of the sorbent with CO2 prior to entering the adsorber. Specifically, CO2-rich gas was utilized to convey sorbent from the regenerator to the adsorber. This gas was nominally 45°C below the regenerator temperature during testing. ADA's post-combustion capture system with modifications to overcome pilot constraints, in conjunction with incorporating a sorbent with CO2 working capacity of 15 g CO2/100 g sorbent and a contact time of 10 to 15 minutes or less with flue gas could provide significant cost and performance benefits when compared to an MEA system.

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The overall objective of the proposed research is to develop a low cost, high capacity CO2 sorbent and demonstrate its technical and economic viability for pre-combustion CO2 capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO2 partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO2 capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

Advances in Carbon Capture

Advances in Carbon Capture PDF Author: Mohammad Reza Rahimpour
Publisher: Woodhead Publishing
ISBN: 0128227583
Category : Science
Languages : en
Pages : 574

Get Book Here

Book Description
Advances in Carbon Capture reviews major implementations of CO2 capture, including absorption, adsorption, permeation and biological techniques. For each approach, key benefits and drawbacks of separation methods and technologies, perspectives on CO2 reuse and conversion, and pathways for future CO2 capture research are explored in depth. The work presents a comprehensive comparison of capture technologies. In addition, the alternatives for CO2 separation from various feeds are investigated based on process economics, flexibility, industrial aspects, purification level and environmental viewpoints. - Explores key CO2 separation and compare technologies in terms of provable advantages and limitations - Analyzes all critical CO2 capture methods in tandem with related technologies - Introduces a panorama of various applications of CO2 capture

Evaluation of Carbon Dioxide Capture From Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents

Evaluation of Carbon Dioxide Capture From Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 183

Get Book Here

Book Description


Optimization of Solid Sorbent CO2 Capture and Water Usage Reduction in Advanced Power Generation

Optimization of Solid Sorbent CO2 Capture and Water Usage Reduction in Advanced Power Generation PDF Author: Qin Chen
Publisher:
ISBN: 9781339528526
Category :
Languages : en
Pages : 337

Get Book Here

Book Description
Greenhouse gas emissions and water usage are two major concerns in the power generation sector. Advanced clean coal technologies (i.e., solid sorbent CO2 capture technologies and combined wet/dry cooling system) are promising for future central power generation in order to achieve sustainable, secure, and efficient system performance. This dissertation describes research associated with advanced coal derived clean power generation, from near-term pulverized coal (PC) power plant strategies retrofitted for CO 2 capture, to long-term integrated gasification combined cycle (IGCC) power generation, to co-production IGCC with carbon capture and storage (CCS) co-fueled by coal and biomass.In this study, the post-combustion solid sorbent based CO2 capture system for the PC power plant is optimized for integration in order to minimize plant modifications and the associated downtime. Due to significantly less steam usage in sorbent regeneration, the PC plant with advanced solid sorbent CO2 capture has better performance and lower cost of electricity than the plant using conventional amine scrubbing technology. By employing a combined wet/dry cooling system, the PC plant with CO2 capture reduces water usage significantly, while the performance and water usage are a function of ambient conditions as predicted by a mathematical model, the latter of which is validated by experimental data from the literature.Pre-combustion solid sorbent based CO2 capture technologies used in the IGCC are evaluated by systems analysis and compared to Selexol TM CO2 capture. Compared with the SelexolTM approach, solid sorbent CO2 capture results in a power plant with significantly higher overall plant efficiency and more attractive economics.Computational fluid dynamics (CFD) simulation models were developed for both solid sorbent CO2 capture alone, and combined water gas shift (WGS) and solid sorbent CO2 capture in the IGCC applications. ANSYS FLUENT and User Defined Functions (UDF) were the resources adopted to incorporate the fluid mechanics, heat and mass transfer, water vaporization, adsorption equilibrium and kinetics, and WGS reaction kinetics . The CFD models were validated by experimental data, and applied to commercial size fixed bed reactor designs and simulations. It was found that (1) the CO2 breakthrough time or CO2 loading capacity is independent of reactor geometry as long as the space velocity is constant, (2) the adsorption rate is the rate controlling step for CO2 capture using solid sorbent, and (3) break through occurs before the solid sorbent near the exit of the bed is fully utilized due to bulk transfer of the CO2 in the axial direction. However, a low space velocity can increase the loading of the sorbent. The CFD approach also assists in the design of effective thermal management strategies for the reactor in the case of combined WGS and solid sorbent CO 2 capture.Co-feeding of biomass along with coal and the co-production of H 2 and synthetic fuels in IGCCs is evaluated for future clean coal power generation. It was determined by systems analyses that co-feeding and co-production IGCCs are preferable for renewable energy utilization and energy security, with the co-products being produced at competitive costs.

Development of a Dry Sorbent-based Post-Combustion CO2 Capture Technology for Retrofit in Existing Power Plants

Development of a Dry Sorbent-based Post-Combustion CO2 Capture Technology for Retrofit in Existing Power Plants PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The objective of this research and development (R & D) project was to further the development of a solid sorbent-based CO2 capture process based on sodium carbonate (i.e. the Dry Carbonate Process) that is capable of capturing>90% of the CO2 as a nearly pure stream from coal-fired power plant flue gas with

Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants

Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO2 capture. The project objective was to address the viability and accelerate development of a solid-based CO2 capture technology. To meet this objective, initial evaluations of sorbents and the process / equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO2 capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines, 31 carbon based materials, 6 zeolites, 7 supported carbonates (evaluated under separate funding), 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant's Martin Lake Steam Electric Station and Xcel Energy's Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO2 removal with the sorbents evaluated under this program, it was useful to compare the CO2 removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the co-current adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO2 for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO2 removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO2 capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO2 uptake rate. Th ...

Integrated Dry NO[sub X]/SO[sub 2] Emissions Control System Calcium-based Dry Sorbent Injection. Test Report, April 30--November 2, 1993

Integrated Dry NO[sub X]/SO[sub 2] Emissions Control System Calcium-based Dry Sorbent Injection. Test Report, April 30--November 2, 1993 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The DOE sponsored Integrated Dry NO[sub x]SO[sub 2] Emissions Control System program, which is a Clean Coal Technology III demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO[sub x] and SO[sub 2] emissions through the integration of: (1) down-fired low-NO[sub x] burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO[sub x] removal; and (3) dry sorbent injection and duct humidification for SO[sub 2] removal. The effectiveness of the integrated system on a high-sulfur coal will also be investigated. This report documents the fifth phase of the test program, where the performance of the dry sorbent injection of calcium was evaluated as an SO[sub 2] removal technique. Dry sorbent injection with humidification was performed downstream of the air heater (in-duct). Calcium injection before the economizer was also investigated. The in-duct calcium sorbent and humidification retrofit resulted in SO[sub 2] reductions of 28 to 40 percent, with a Ca/S of 2, and a 25 to 30[degrees]F approach to adiabatic saturation temperature. The results of the economizer calcium injection tests were disappointing with less than 10 percent SO[sub 2] removal at a Ca/S of 2. Poor sorbent distribution due to limited access into the injection cavity was partially responsible for the low overall removals. However, even in areas of high sorbent concentration (local Ca/S ratios of approximately 6), SO[sub 2] removals were limited to 30 percent. It is suspected that other factors (sorbent properties and limited residence times) also contributed to the poor performance.

Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 544

Get Book Here

Book Description