Evaluation Complexity of Algorithms for Nonconvex Optimization: Theory, Computation, and Perspectives

Evaluation Complexity of Algorithms for Nonconvex Optimization: Theory, Computation, and Perspectives PDF Author: Coralia Cartis
Publisher:
ISBN: 9781611976984
Category : Mathematical optimization
Languages : en
Pages : 529

Get Book Here

Book Description
One of the most popular ways to assess the "effort" needed to solve a problem is to count how many evaluations of the problem functions (and their derivatives) are required. In many cases, this is often the dominating computational cost. Given an optimization problem satisfying reasonable assumptions-and given access to problem-function values and derivatives of various degrees-how many evaluations might be required to approximately solve the problem? Evaluation Complexity of Algorithms for Nonconvex Optimization: Theory, Computation, and Perspectives addresses this question for nonconvex optimization problems, those that may have local minimizers and appear most often in practice. This is the first book on complexity to cover topics such as composite and constrained optimization, derivative-free optimization, subproblem solution, and optimal (lower and sharpness) bounds for nonconvex problems, to address the disadvantages of traditional optimality measures and propose useful surrogates leading to algorithms that compute approximate high-order critical points, and to compare traditional and new methods, highlighting the advantages of the latter from a complexity point of view. This is the go-to book for those interested in solving nonconvex problems. It is suitable for advanced undergraduate and graduate students in courses on Advanced Numerical Analysis, Special Topics on Numerical Analysis, Topics on Data Science, Topics on Numerical Optimization, and Topics on Approximation Theory.

Evaluation Complexity of Algorithms for Nonconvex Optimization: Theory, Computation, and Perspectives

Evaluation Complexity of Algorithms for Nonconvex Optimization: Theory, Computation, and Perspectives PDF Author: Coralia Cartis
Publisher:
ISBN: 9781611976984
Category : Mathematical optimization
Languages : en
Pages : 529

Get Book Here

Book Description
One of the most popular ways to assess the "effort" needed to solve a problem is to count how many evaluations of the problem functions (and their derivatives) are required. In many cases, this is often the dominating computational cost. Given an optimization problem satisfying reasonable assumptions-and given access to problem-function values and derivatives of various degrees-how many evaluations might be required to approximately solve the problem? Evaluation Complexity of Algorithms for Nonconvex Optimization: Theory, Computation, and Perspectives addresses this question for nonconvex optimization problems, those that may have local minimizers and appear most often in practice. This is the first book on complexity to cover topics such as composite and constrained optimization, derivative-free optimization, subproblem solution, and optimal (lower and sharpness) bounds for nonconvex problems, to address the disadvantages of traditional optimality measures and propose useful surrogates leading to algorithms that compute approximate high-order critical points, and to compare traditional and new methods, highlighting the advantages of the latter from a complexity point of view. This is the go-to book for those interested in solving nonconvex problems. It is suitable for advanced undergraduate and graduate students in courses on Advanced Numerical Analysis, Special Topics on Numerical Analysis, Topics on Data Science, Topics on Numerical Optimization, and Topics on Approximation Theory.

Evaluation Complexity of Algorithms for Nonconvex Optimization

Evaluation Complexity of Algorithms for Nonconvex Optimization PDF Author: Coralia Cartis
Publisher: SIAM
ISBN: 1611976995
Category : Mathematics
Languages : en
Pages : 549

Get Book Here

Book Description
A popular way to assess the “effort” needed to solve a problem is to count how many evaluations of the problem functions (and their derivatives) are required. In many cases, this is often the dominating computational cost. Given an optimization problem satisfying reasonable assumptions—and given access to problem-function values and derivatives of various degrees—how many evaluations might be required to approximately solve the problem? Evaluation Complexity of Algorithms for Nonconvex Optimization: Theory, Computation, and Perspectives addresses this question for nonconvex optimization problems, those that may have local minimizers and appear most often in practice. This is the first book on complexity to cover topics such as composite and constrained optimization, derivative-free optimization, subproblem solution, and optimal (lower and sharpness) bounds for nonconvex problems. It is also the first to address the disadvantages of traditional optimality measures and propose useful surrogates leading to algorithms that compute approximate high-order critical points, and to compare traditional and new methods, highlighting the advantages of the latter from a complexity point of view. This is the go-to book for those interested in solving nonconvex optimization problems. It is suitable for advanced undergraduate and graduate students in courses on advanced numerical analysis, data science, numerical optimization, and approximation theory.

An Introduction to Convexity, Optimization, and Algorithms

An Introduction to Convexity, Optimization, and Algorithms PDF Author: Heinz H. Bauschke
Publisher: SIAM
ISBN: 1611977800
Category : Mathematics
Languages : en
Pages : 192

Get Book Here

Book Description
This concise, self-contained volume introduces convex analysis and optimization algorithms, with an emphasis on bridging the two areas. It explores cutting-edge algorithms—such as the proximal gradient, Douglas–Rachford, Peaceman–Rachford, and FISTA—that have applications in machine learning, signal processing, image reconstruction, and other fields. An Introduction to Convexity, Optimization, and Algorithms contains algorithms illustrated by Julia examples and more than 200 exercises that enhance the reader’s understanding of the topic. Clear explanations and step-by-step algorithmic descriptions facilitate self-study for individuals looking to enhance their expertise in convex analysis and optimization. Designed for courses in convex analysis, numerical optimization, and related subjects, this volume is intended for undergraduate and graduate students in mathematics, computer science, and engineering. Its concise length makes it ideal for a one-semester course. Researchers and professionals in applied areas, such as data science and machine learning, will find insights relevant to their work.

Introduction to Nonlinear Optimization

Introduction to Nonlinear Optimization PDF Author: Amir Beck
Publisher: SIAM
ISBN: 1611977622
Category : Mathematics
Languages : en
Pages : 364

Get Book Here

Book Description
Built on the framework of the successful first edition, this book serves as a modern introduction to the field of optimization. The author’s objective is to provide the foundations of theory and algorithms of nonlinear optimization as well as to present a variety of applications from diverse areas of applied sciences. Introduction to Nonlinear Optimization gradually yet rigorously builds connections between theory, algorithms, applications, and actual implementation. The book contains several topics not typically included in optimization books, such as optimality conditions in sparsity constrained optimization, hidden convexity, and total least squares. Readers will discover a wide array of applications such as circle fitting, Chebyshev center, the Fermat–Weber problem, denoising, clustering, total least squares, and orthogonal regression. These applications are studied both theoretically and algorithmically, illustrating concepts such as duality. Python and MATLAB programs are used to show how the theory can be implemented. The extremely popular CVX toolbox (MATLAB) and CVXPY module (Python) are described and used. More than 250 theoretical, algorithmic, and numerical exercises enhance the reader's understanding of the topics. (More than 70 of the exercises provide detailed solutions, and many others are provided with final answers.) The theoretical and algorithmic topics are illustrated by Python and MATLAB examples. This book is intended for graduate or advanced undergraduate students in mathematics, computer science, electrical engineering, and potentially other engineering disciplines.

Problems and Solutions for Integer and Combinatorial Optimization

Problems and Solutions for Integer and Combinatorial Optimization PDF Author: Mustafa Ç. Pınar
Publisher: SIAM
ISBN: 1611977762
Category : Mathematics
Languages : en
Pages : 148

Get Book Here

Book Description
The only book offering solved exercises for integer and combinatorial optimization, this book contains 102 classroom tested problems of varying scope and difficulty chosen from a plethora of topics and applications. It has an associated website containing additional problems, lecture notes, and suggested readings. Topics covered include modeling capabilities of integer variables, the Branch-and-Bound method, cutting planes, network optimization models, shortest path problems, optimum tree problems, maximal cardinality matching problems, matching-covering duality, symmetric and asymmetric TSP, 2-matching and 1-tree relaxations, VRP formulations, and dynamic programming. Problems and Solutions for Integer and Combinatorial Optimization: Building Skills in Discrete Optimization is meant for undergraduate and beginning graduate students in mathematics, computer science, and engineering to use for self-study and for instructors to use in conjunction with other course material and when teaching courses in discrete optimization.

Moment and Polynomial Optimization

Moment and Polynomial Optimization PDF Author: Jiawang Nie
Publisher: SIAM
ISBN: 1611977606
Category : Mathematics
Languages : en
Pages : 484

Get Book Here

Book Description
Moment and polynomial optimization is an active research field used to solve difficult questions in many areas, including global optimization, tensor computation, saddle points, Nash equilibrium, and bilevel programs, and it has many applications. The author synthesizes current research and applications, providing a systematic introduction to theory and methods, a comprehensive approach for extracting optimizers and solving truncated moment problems, and a creative methodology for using optimality conditions to construct tight Moment-SOS relaxations. This book is intended for applied mathematicians, engineers, and researchers entering the field. It can be used as a textbook for graduate students in courses on convex optimization, polynomial optimization, and matrix and tensor optimization.

Global Optimization

Global Optimization PDF Author: Marco Locatelli
Publisher: SIAM
ISBN: 1611972671
Category : Mathematics
Languages : en
Pages : 439

Get Book Here

Book Description
This volume contains a thorough overview of the rapidly growing field of global optimization, with chapters on key topics such as complexity, heuristic methods, derivation of lower bounds for minimization problems, and branch-and-bound methods and convergence. The final chapter offers both benchmark test problems and applications of global optimization, such as finding the conformation of a molecule or planning an optimal trajectory for interplanetary space travel. An appendix provides fundamental information on convex and concave functions. Intended for Ph.D. students, researchers, and practitioners looking for advanced solution methods to difficult optimization problems. It can be used as a supplementary text in an advanced graduate-level seminar.

Algorithms from THE BOOK

Algorithms from THE BOOK PDF Author: Kenneth Lange
Publisher: SIAM
ISBN: 1611976170
Category : Mathematics
Languages : en
Pages : 227

Get Book Here

Book Description
Algorithms are a dominant force in modern culture, and every indication is that they will become more pervasive, not less. The best algorithms are undergirded by beautiful mathematics. This text cuts across discipline boundaries to highlight some of the most famous and successful algorithms. Readers are exposed to the principles behind these examples and guided in assembling complex algorithms from simpler building blocks. Written in clear, instructive language within the constraints of mathematical rigor, Algorithms from THE BOOK includes a large number of classroom-tested exercises at the end of each chapter. The appendices cover background material often omitted from undergraduate courses. Most of the algorithm descriptions are accompanied by Julia code, an ideal language for scientific computing. This code is immediately available for experimentation. Algorithms from THE BOOK is aimed at first-year graduate and advanced undergraduate students. It will also serve as a convenient reference for professionals throughout the mathematical sciences, physical sciences, engineering, and the quantitative sectors of the biological and social sciences.

Understanding Machine Learning

Understanding Machine Learning PDF Author: Shai Shalev-Shwartz
Publisher: Cambridge University Press
ISBN: 1107057132
Category : Computers
Languages : en
Pages : 415

Get Book Here

Book Description
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Matrix Analysis and Computations

Matrix Analysis and Computations PDF Author: Zhong-Zhi Bai
Publisher: SIAM
ISBN: 1611976634
Category : Mathematics
Languages : en
Pages : 496

Get Book Here

Book Description
This comprehensive book is presented in two parts; the first part introduces the basics of matrix analysis necessary for matrix computations, and the second part presents representative methods and the corresponding theories in matrix computations. Among the key features of the book are the extensive exercises at the end of each chapter. Matrix Analysis and Computations provides readers with the matrix theory necessary for matrix computations, especially for direct and iterative methods for solving systems of linear equations. It includes systematic methods and rigorous theory on matrix splitting iteration methods and Krylov subspace iteration methods, as well as current results on preconditioning and iterative methods for solving standard and generalized saddle-point linear systems. This book can be used as a textbook for graduate students as well as a self-study tool and reference for researchers and engineers interested in matrix analysis and matrix computations. It is appropriate for courses in numerical analysis, numerical optimization, data science, and approximation theory, among other topics