Author: Peter R. Robichaud
Publisher:
ISBN:
Category : Fire management
Languages : en
Pages : 92
Book Description
Spending on postfire emergency watershed rehabilitation has increased during the past decade. A west-wide evaluation of USDA Forest Service burned area emergency rehabilitation (BAER) treatment effectiveness was undertaken as a joint project by USDA Forest Service Research and National Forest System staffs. This evaluation covers 470 fires and 321 BAER projects, from 1973 through 1998 in USDA Forest Service Regions 1 through 6. A literature review, interviews with key Regional and Forest BAER specialists, analysis of burned area reports, and review of Forest and District monitoring reports were used in the evaluation. The study found that spending on rehabilitation has increased to over $48 million during the past decade because the perceived threat of debris flows and floods has increased where fires are closer to the wildland-urban interface. Existing literature on treatment effectiveness is limited, thus making treatment comparisons difficult. The amount of protection provided by any treatment is small. Of the available treatments, contour-felled logs show promise as an effective hillslope treatment because they provide some immediate watershed protection, especially during the first postfire year. Seeding has a low probability of reducing the first season erosion because most of the benefits of the seeded grass occurs after the initial damaging runoff events. To reduce road failures, treatments such as properly spaced rolling dips, water bars, and culvert reliefs can move water past the road prism. Channel treatments such as straw bale check dams should be used sparingly because onsite erosion control is more effective than offsite sediment storage in channels in reducing sedimentation from burned watersheds. From this review, we recommend increased treatment effectiveness monitoring at the hillslope and sub-catchment scale, streamlined postfire data collection needs, increased training on evaluation postfire watershed conditions, and development of an easily accessible knowledge base of BAER techniques.
Evaluating the Effectiveness of Postfire Rehabilitation Treatments
Author: Peter R. Robichaud
Publisher:
ISBN:
Category : Fire management
Languages : en
Pages : 92
Book Description
Spending on postfire emergency watershed rehabilitation has increased during the past decade. A west-wide evaluation of USDA Forest Service burned area emergency rehabilitation (BAER) treatment effectiveness was undertaken as a joint project by USDA Forest Service Research and National Forest System staffs. This evaluation covers 470 fires and 321 BAER projects, from 1973 through 1998 in USDA Forest Service Regions 1 through 6. A literature review, interviews with key Regional and Forest BAER specialists, analysis of burned area reports, and review of Forest and District monitoring reports were used in the evaluation. The study found that spending on rehabilitation has increased to over $48 million during the past decade because the perceived threat of debris flows and floods has increased where fires are closer to the wildland-urban interface. Existing literature on treatment effectiveness is limited, thus making treatment comparisons difficult. The amount of protection provided by any treatment is small. Of the available treatments, contour-felled logs show promise as an effective hillslope treatment because they provide some immediate watershed protection, especially during the first postfire year. Seeding has a low probability of reducing the first season erosion because most of the benefits of the seeded grass occurs after the initial damaging runoff events. To reduce road failures, treatments such as properly spaced rolling dips, water bars, and culvert reliefs can move water past the road prism. Channel treatments such as straw bale check dams should be used sparingly because onsite erosion control is more effective than offsite sediment storage in channels in reducing sedimentation from burned watersheds. From this review, we recommend increased treatment effectiveness monitoring at the hillslope and sub-catchment scale, streamlined postfire data collection needs, increased training on evaluation postfire watershed conditions, and development of an easily accessible knowledge base of BAER techniques.
Publisher:
ISBN:
Category : Fire management
Languages : en
Pages : 92
Book Description
Spending on postfire emergency watershed rehabilitation has increased during the past decade. A west-wide evaluation of USDA Forest Service burned area emergency rehabilitation (BAER) treatment effectiveness was undertaken as a joint project by USDA Forest Service Research and National Forest System staffs. This evaluation covers 470 fires and 321 BAER projects, from 1973 through 1998 in USDA Forest Service Regions 1 through 6. A literature review, interviews with key Regional and Forest BAER specialists, analysis of burned area reports, and review of Forest and District monitoring reports were used in the evaluation. The study found that spending on rehabilitation has increased to over $48 million during the past decade because the perceived threat of debris flows and floods has increased where fires are closer to the wildland-urban interface. Existing literature on treatment effectiveness is limited, thus making treatment comparisons difficult. The amount of protection provided by any treatment is small. Of the available treatments, contour-felled logs show promise as an effective hillslope treatment because they provide some immediate watershed protection, especially during the first postfire year. Seeding has a low probability of reducing the first season erosion because most of the benefits of the seeded grass occurs after the initial damaging runoff events. To reduce road failures, treatments such as properly spaced rolling dips, water bars, and culvert reliefs can move water past the road prism. Channel treatments such as straw bale check dams should be used sparingly because onsite erosion control is more effective than offsite sediment storage in channels in reducing sedimentation from burned watersheds. From this review, we recommend increased treatment effectiveness monitoring at the hillslope and sub-catchment scale, streamlined postfire data collection needs, increased training on evaluation postfire watershed conditions, and development of an easily accessible knowledge base of BAER techniques.
Evaluating the Effectiveness of Postfire Rehabilitation Treatments
Author: Peter Robichaud
Publisher:
ISBN: 9780756736118
Category :
Languages : en
Pages : 85
Book Description
Spending on postfire emergency watershed rehabilitation has increased during the past decade. A west-wide evaluation of U.S. Dept. of Agriculture (USDA) Forest Service burned area emergency rehabilitation (BAER) treatment effectiveness was undertaken as a joint project by USDA Forest Service Research & Nat. Forest System staffs. This evaluation covers 470 fires & 321 BAER projects, from 1973 through 1988 in USDA Forest Service Regions 1 through 6. A literature review, interviews with key Regional & Forest BAER specialists, analysis of burned area reports, & review of Forest & district monitoring reports were used in the evaluation. Charts & tables.
Publisher:
ISBN: 9780756736118
Category :
Languages : en
Pages : 85
Book Description
Spending on postfire emergency watershed rehabilitation has increased during the past decade. A west-wide evaluation of U.S. Dept. of Agriculture (USDA) Forest Service burned area emergency rehabilitation (BAER) treatment effectiveness was undertaken as a joint project by USDA Forest Service Research & Nat. Forest System staffs. This evaluation covers 470 fires & 321 BAER projects, from 1973 through 1988 in USDA Forest Service Regions 1 through 6. A literature review, interviews with key Regional & Forest BAER specialists, analysis of burned area reports, & review of Forest & district monitoring reports were used in the evaluation. Charts & tables.
Evaluating the Effectiveness of Postfire Rehabilitation Treatments
Author: Peter R. Robichaud
Publisher:
ISBN:
Category : Fire management
Languages : en
Pages : 92
Book Description
Spending on postfire emergency watershed rehabilitation has increased during the past decade. A west-wide evaluation of USDA Forest Service burned area emergency rehabilitation (BAER) treatment effectiveness was undertaken as a joint project by USDA Forest Service Research and National Forest System staffs. This evaluation covers 470 fires and 321 BAER projects, from 1973 through 1998 in USDA Forest Service Regions 1 through 6. A literature review, interviews with key Regional and Forest BAER specialists, analysis of burned area reports, and review of Forest and District monitoring reports were used in the evaluation. The study found that spending on rehabilitation has increased to over $48 million during the past decade because the perceived threat of debris flows and floods has increased where fires are closer to the wildland-urban interface. Existing literature on treatment effectiveness is limited, thus making treatment comparisons difficult. The amount of protection provided by any treatment is small. Of the available treatments, contour-felled logs show promise as an effective hillslope treatment because they provide some immediate watershed protection, especially during the first postfire year. Seeding has a low probability of reducing the first season erosion because most of the benefits of the seeded grass occurs after the initial damaging runoff events. To reduce road failures, treatments such as properly spaced rolling dips, water bars, and culvert reliefs can move water past the road prism. Channel treatments such as straw bale check dams should be used sparingly because onsite erosion control is more effective than offsite sediment storage in channels in reducing sedimentation from burned watersheds. From this review, we recommend increased treatment effectiveness monitoring at the hillslope and sub-catchment scale, streamlined postfire data collection needs, increased training on evaluation postfire watershed conditions, and development of an easily accessible knowledge base of BAER techniques.
Publisher:
ISBN:
Category : Fire management
Languages : en
Pages : 92
Book Description
Spending on postfire emergency watershed rehabilitation has increased during the past decade. A west-wide evaluation of USDA Forest Service burned area emergency rehabilitation (BAER) treatment effectiveness was undertaken as a joint project by USDA Forest Service Research and National Forest System staffs. This evaluation covers 470 fires and 321 BAER projects, from 1973 through 1998 in USDA Forest Service Regions 1 through 6. A literature review, interviews with key Regional and Forest BAER specialists, analysis of burned area reports, and review of Forest and District monitoring reports were used in the evaluation. The study found that spending on rehabilitation has increased to over $48 million during the past decade because the perceived threat of debris flows and floods has increased where fires are closer to the wildland-urban interface. Existing literature on treatment effectiveness is limited, thus making treatment comparisons difficult. The amount of protection provided by any treatment is small. Of the available treatments, contour-felled logs show promise as an effective hillslope treatment because they provide some immediate watershed protection, especially during the first postfire year. Seeding has a low probability of reducing the first season erosion because most of the benefits of the seeded grass occurs after the initial damaging runoff events. To reduce road failures, treatments such as properly spaced rolling dips, water bars, and culvert reliefs can move water past the road prism. Channel treatments such as straw bale check dams should be used sparingly because onsite erosion control is more effective than offsite sediment storage in channels in reducing sedimentation from burned watersheds. From this review, we recommend increased treatment effectiveness monitoring at the hillslope and sub-catchment scale, streamlined postfire data collection needs, increased training on evaluation postfire watershed conditions, and development of an easily accessible knowledge base of BAER techniques.
PostFire Treatment Effectiveness for Hillslope Stabilization
Author:
Publisher: DIANE Publishing
ISBN: 1437941532
Category :
Languages : en
Pages : 72
Book Description
Publisher: DIANE Publishing
ISBN: 1437941532
Category :
Languages : en
Pages : 72
Book Description
Post-fire Treatment Effectiveness for Hillslope Stabilization
Author: Peter R. Robichaud
Publisher:
ISBN:
Category : Forest fires
Languages : en
Pages : 72
Book Description
This synthesis of post-fire treatment effectiveness reviews the past decade of research, monitoring, and product development related to post-fire hillslope emergency stabilization treatments, including erosion barriers, mulching, chemical soil treatments, and combinations of these treatments. In the past ten years, erosion barrier treatments (contour-felled logs and straw wattles) have declined in use and are now rarely applied as a post-fire hillslope treatment. In contrast, dry mulch treatments (agricultural straw, wood strands, wood shreds, etc.) have quickly gained acceptance as effective, though somewhat expensive, post-fire hillslope stabilization treatments and are frequently recommended when values-at-risk warrant protection. This change has been motivated by research that shows the proportion of exposed mineral soil (or conversely, the proportion of ground cover) to be the primary treatment factor controlling post-fire hillslope erosion. Erosion barrier treatments provide little ground cover and have been shown to be less effective than mulch, especially during short-duration, high intensity rainfall events. In addition, innovative options for producing and applying mulch materials have adapted these materials for use on large burned areas that are inaccessible by road. Although longer-term studies on mulch treatment effectiveness are on-going, early results and short-term studies have shown that dry mulches can be highly effective in reducing post-fire runoff and erosion. Hydromulches have been used after some fires, but they have been less effective than dry mulches in stabilizing burned hillslopes and generally decompose or degrade within a year.
Publisher:
ISBN:
Category : Forest fires
Languages : en
Pages : 72
Book Description
This synthesis of post-fire treatment effectiveness reviews the past decade of research, monitoring, and product development related to post-fire hillslope emergency stabilization treatments, including erosion barriers, mulching, chemical soil treatments, and combinations of these treatments. In the past ten years, erosion barrier treatments (contour-felled logs and straw wattles) have declined in use and are now rarely applied as a post-fire hillslope treatment. In contrast, dry mulch treatments (agricultural straw, wood strands, wood shreds, etc.) have quickly gained acceptance as effective, though somewhat expensive, post-fire hillslope stabilization treatments and are frequently recommended when values-at-risk warrant protection. This change has been motivated by research that shows the proportion of exposed mineral soil (or conversely, the proportion of ground cover) to be the primary treatment factor controlling post-fire hillslope erosion. Erosion barrier treatments provide little ground cover and have been shown to be less effective than mulch, especially during short-duration, high intensity rainfall events. In addition, innovative options for producing and applying mulch materials have adapted these materials for use on large burned areas that are inaccessible by road. Although longer-term studies on mulch treatment effectiveness are on-going, early results and short-term studies have shown that dry mulches can be highly effective in reducing post-fire runoff and erosion. Hydromulches have been used after some fires, but they have been less effective than dry mulches in stabilizing burned hillslopes and generally decompose or degrade within a year.
General Technical Report RMRS
Author:
Publisher:
ISBN:
Category : Forests and forestry
Languages : en
Pages : 470
Book Description
Publisher:
ISBN:
Category : Forests and forestry
Languages : en
Pages : 470
Book Description
Research Note RMRS
Author:
Publisher:
ISBN:
Category : Forests and forestry
Languages : en
Pages : 160
Book Description
Publisher:
ISBN:
Category : Forests and forestry
Languages : en
Pages : 160
Book Description
Klamath National Forest (N.F.), Thom-Seider Vegetation Management and Fuels Reduction Project
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 368
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 368
Book Description
Hayman Fire Case Study
Author:
Publisher:
ISBN:
Category : Fire ecology
Languages : en
Pages : 444
Book Description
In 2002 much of the Front Range of the Rocky Mountains in Colorado was rich in dry vegetation as a result of fire exclusion and the droughty conditions that prevailed in recent years. These dry and heavy fuel loadings were continuous along the South Platte River corridor located between Denver and Colorado Springs on the Front Range. These topographic and fuel conditions combined with a dry and windy weather system centered over eastern Washington to produce ideal burning conditions. The start of the Hayman Fire was timed and located perfectly to take advantage of these conditions resulting in a wildfire run in 1 day of over 60,000 acres and finally impacting over 138,000 acres. The Hayman Fire Case Study, involving more than 60 scientists and professionals from throughout the United States, examined how the fire behaved, the effects of fuel treatments on burn severity, the emissions produced, the ecological (for example, soil, vegetation, animals) effects, the home destruction, postfire rehabilitation activities, and the social and economic issues surrounding the Hayman Fire. The Hayman Fire Case Study revealed much about wildfires and their interactions with both the social and natural environments. As the largest fire in Colorado history it had a profound impact both locally and nationally. The findings of this study will inform both private and public decisions on the management of natural resources and how individuals, communities, and organizations can prepare for wildfire events.
Publisher:
ISBN:
Category : Fire ecology
Languages : en
Pages : 444
Book Description
In 2002 much of the Front Range of the Rocky Mountains in Colorado was rich in dry vegetation as a result of fire exclusion and the droughty conditions that prevailed in recent years. These dry and heavy fuel loadings were continuous along the South Platte River corridor located between Denver and Colorado Springs on the Front Range. These topographic and fuel conditions combined with a dry and windy weather system centered over eastern Washington to produce ideal burning conditions. The start of the Hayman Fire was timed and located perfectly to take advantage of these conditions resulting in a wildfire run in 1 day of over 60,000 acres and finally impacting over 138,000 acres. The Hayman Fire Case Study, involving more than 60 scientists and professionals from throughout the United States, examined how the fire behaved, the effects of fuel treatments on burn severity, the emissions produced, the ecological (for example, soil, vegetation, animals) effects, the home destruction, postfire rehabilitation activities, and the social and economic issues surrounding the Hayman Fire. The Hayman Fire Case Study revealed much about wildfires and their interactions with both the social and natural environments. As the largest fire in Colorado history it had a profound impact both locally and nationally. The findings of this study will inform both private and public decisions on the management of natural resources and how individuals, communities, and organizations can prepare for wildfire events.
Natural Hazard Uncertainty Assessment
Author: Karin Riley
Publisher: John Wiley & Sons
ISBN: 1119028094
Category : Science
Languages : en
Pages : 728
Book Description
Uncertainties are pervasive in natural hazards, and it is crucial to develop robust and meaningful approaches to characterize and communicate uncertainties to inform modeling efforts. In this monograph we provide a broad, cross-disciplinary overview of issues relating to uncertainties faced in natural hazard and risk assessment. We introduce some basic tenets of uncertainty analysis, discuss issues related to communication and decision support, and offer numerous examples of analyses and modeling approaches that vary by context and scope. Contributors include scientists from across the full breath of the natural hazard scientific community, from those in real-time analysis of natural hazards to those in the research community from academia and government. Key themes and highlights include: Substantial breadth and depth of analysis in terms of the types of natural hazards addressed, the disciplinary perspectives represented, and the number of studies included Targeted, application-centered analyses with a focus on development and use of modeling techniques to address various sources of uncertainty Emphasis on the impacts of climate change on natural hazard processes and outcomes Recommendations for cross-disciplinary and science transfer across natural hazard sciences This volume will be an excellent resource for those interested in the current work on uncertainty classification/quantification and will document common and emergent research themes to allow all to learn from each other and build a more connected but still diverse and ever growing community of scientists. Read an interview with the editors to find out more: https://eos.org/editors-vox/reducing-uncertainty-in-hazard-prediction
Publisher: John Wiley & Sons
ISBN: 1119028094
Category : Science
Languages : en
Pages : 728
Book Description
Uncertainties are pervasive in natural hazards, and it is crucial to develop robust and meaningful approaches to characterize and communicate uncertainties to inform modeling efforts. In this monograph we provide a broad, cross-disciplinary overview of issues relating to uncertainties faced in natural hazard and risk assessment. We introduce some basic tenets of uncertainty analysis, discuss issues related to communication and decision support, and offer numerous examples of analyses and modeling approaches that vary by context and scope. Contributors include scientists from across the full breath of the natural hazard scientific community, from those in real-time analysis of natural hazards to those in the research community from academia and government. Key themes and highlights include: Substantial breadth and depth of analysis in terms of the types of natural hazards addressed, the disciplinary perspectives represented, and the number of studies included Targeted, application-centered analyses with a focus on development and use of modeling techniques to address various sources of uncertainty Emphasis on the impacts of climate change on natural hazard processes and outcomes Recommendations for cross-disciplinary and science transfer across natural hazard sciences This volume will be an excellent resource for those interested in the current work on uncertainty classification/quantification and will document common and emergent research themes to allow all to learn from each other and build a more connected but still diverse and ever growing community of scientists. Read an interview with the editors to find out more: https://eos.org/editors-vox/reducing-uncertainty-in-hazard-prediction