Author: Edward John Specht
Publisher: Birkhäuser
ISBN: 3319237756
Category : Mathematics
Languages : en
Pages : 537
Book Description
In this monograph, the authors present a modern development of Euclidean geometry from independent axioms, using up-to-date language and providing detailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors present thirteen axioms in sequence, proving as many theorems as possible at each stage and, in the process, building up subgeometries, most notably the Pasch and neutral geometries. Standard topics such as the congruence theorems for triangles, embedding the real numbers in a line, and coordinatization of the plane are included, as well as theorems of Pythagoras, Desargues, Pappas, Menelaus, and Ceva. The final chapter covers consistency and independence of axioms, as well as independence of definition properties. There are over 300 exercises; solutions to many of these, including all that are needed for this development, are available online at the homepage for the book at www.springer.com. Supplementary material is available online covering construction of complex numbers, arc length, the circular functions, angle measure, and the polygonal form of the Jordan Curve theorem. Euclidean Geometry and Its Subgeometries is intended for advanced students and mature mathematicians, but the proofs are thoroughly worked out to make it accessible to undergraduate students as well. It can be regarded as a completion, updating, and expansion of Hilbert's work, filling a gap in the existing literature.
Euclidean Geometry and its Subgeometries
Author: Edward John Specht
Publisher: Birkhäuser
ISBN: 3319237756
Category : Mathematics
Languages : en
Pages : 537
Book Description
In this monograph, the authors present a modern development of Euclidean geometry from independent axioms, using up-to-date language and providing detailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors present thirteen axioms in sequence, proving as many theorems as possible at each stage and, in the process, building up subgeometries, most notably the Pasch and neutral geometries. Standard topics such as the congruence theorems for triangles, embedding the real numbers in a line, and coordinatization of the plane are included, as well as theorems of Pythagoras, Desargues, Pappas, Menelaus, and Ceva. The final chapter covers consistency and independence of axioms, as well as independence of definition properties. There are over 300 exercises; solutions to many of these, including all that are needed for this development, are available online at the homepage for the book at www.springer.com. Supplementary material is available online covering construction of complex numbers, arc length, the circular functions, angle measure, and the polygonal form of the Jordan Curve theorem. Euclidean Geometry and Its Subgeometries is intended for advanced students and mature mathematicians, but the proofs are thoroughly worked out to make it accessible to undergraduate students as well. It can be regarded as a completion, updating, and expansion of Hilbert's work, filling a gap in the existing literature.
Publisher: Birkhäuser
ISBN: 3319237756
Category : Mathematics
Languages : en
Pages : 537
Book Description
In this monograph, the authors present a modern development of Euclidean geometry from independent axioms, using up-to-date language and providing detailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors present thirteen axioms in sequence, proving as many theorems as possible at each stage and, in the process, building up subgeometries, most notably the Pasch and neutral geometries. Standard topics such as the congruence theorems for triangles, embedding the real numbers in a line, and coordinatization of the plane are included, as well as theorems of Pythagoras, Desargues, Pappas, Menelaus, and Ceva. The final chapter covers consistency and independence of axioms, as well as independence of definition properties. There are over 300 exercises; solutions to many of these, including all that are needed for this development, are available online at the homepage for the book at www.springer.com. Supplementary material is available online covering construction of complex numbers, arc length, the circular functions, angle measure, and the polygonal form of the Jordan Curve theorem. Euclidean Geometry and Its Subgeometries is intended for advanced students and mature mathematicians, but the proofs are thoroughly worked out to make it accessible to undergraduate students as well. It can be regarded as a completion, updating, and expansion of Hilbert's work, filling a gap in the existing literature.
The Semiotics of Movement in Space
Author: Robert James McMurtrie
Publisher: Routledge
ISBN: 1317276515
Category : Language Arts & Disciplines
Languages : en
Pages : 415
Book Description
The Semiotics of Movement in Space explores how people move through buildings and interact with objects in space. Focusing on visitors to the Museum of Contemporary Art in Sydney, McMurtrie analyses and interprets movement and space relations to highlight new developments and applications of spatial semiotics as he proposes that people’s movement options have the potential to transform the meaning of a particular space. He illustrates people’s interaction with microcamera footage of people’s movement through the museum from a first-person point of view, thereby providing an alternative, complementary perspective on how buildings are actually used. The book offers effective tools for practitioners to analyse people’s actual and potential movement patterns to rethink spatial design options from a semiotic perspective. The applicability of the semiotic principles developed in this book is demonstrated by examining movement options in a restaurant and a café, with the hope that the principles can be developed and applied to other sites of displays such as shopping centres and transportation hubs. This book should appeal to scholars of visual communication, semiotics, multimodal discourse analysis and visitor studies.
Publisher: Routledge
ISBN: 1317276515
Category : Language Arts & Disciplines
Languages : en
Pages : 415
Book Description
The Semiotics of Movement in Space explores how people move through buildings and interact with objects in space. Focusing on visitors to the Museum of Contemporary Art in Sydney, McMurtrie analyses and interprets movement and space relations to highlight new developments and applications of spatial semiotics as he proposes that people’s movement options have the potential to transform the meaning of a particular space. He illustrates people’s interaction with microcamera footage of people’s movement through the museum from a first-person point of view, thereby providing an alternative, complementary perspective on how buildings are actually used. The book offers effective tools for practitioners to analyse people’s actual and potential movement patterns to rethink spatial design options from a semiotic perspective. The applicability of the semiotic principles developed in this book is demonstrated by examining movement options in a restaurant and a café, with the hope that the principles can be developed and applied to other sites of displays such as shopping centres and transportation hubs. This book should appeal to scholars of visual communication, semiotics, multimodal discourse analysis and visitor studies.
Thinking Geometrically
Author: Thomas Q. Sibley
Publisher: The Mathematical Association of America
ISBN: 1939512085
Category : Mathematics
Languages : en
Pages : 586
Book Description
Thinking Geometrically: A Survey of Geometries is a well written and comprehensive survey of college geometry that would serve a wide variety of courses for both mathematics majors and mathematics education majors. Great care and attention is spent on developing visual insights and geometric intuition while stressing the logical structure, historical development, and deep interconnectedness of the ideas. Students with less mathematical preparation than upper-division mathematics majors can successfully study the topics needed for the preparation of high school teachers. There is a multitude of exercises and projects in those chapters developing all aspects of geometric thinking for these students as well as for more advanced students. These chapters include Euclidean Geometry, Axiomatic Systems and Models, Analytic Geometry, Transformational Geometry, and Symmetry. Topics in the other chapters, including Non-Euclidean Geometry, Projective Geometry, Finite Geometry, Differential Geometry, and Discrete Geometry, provide a broader view of geometry. The different chapters are as independent as possible, while the text still manages to highlight the many connections between topics. The text is self-contained, including appendices with the material in Euclid’s first book and a high school axiomatic system as well as Hilbert’s axioms. Appendices give brief summaries of the parts of linear algebra and multivariable calculus needed for certain chapters. While some chapters use the language of groups, no prior experience with abstract algebra is presumed. The text will support an approach emphasizing dynamical geometry software without being tied to any particular software.
Publisher: The Mathematical Association of America
ISBN: 1939512085
Category : Mathematics
Languages : en
Pages : 586
Book Description
Thinking Geometrically: A Survey of Geometries is a well written and comprehensive survey of college geometry that would serve a wide variety of courses for both mathematics majors and mathematics education majors. Great care and attention is spent on developing visual insights and geometric intuition while stressing the logical structure, historical development, and deep interconnectedness of the ideas. Students with less mathematical preparation than upper-division mathematics majors can successfully study the topics needed for the preparation of high school teachers. There is a multitude of exercises and projects in those chapters developing all aspects of geometric thinking for these students as well as for more advanced students. These chapters include Euclidean Geometry, Axiomatic Systems and Models, Analytic Geometry, Transformational Geometry, and Symmetry. Topics in the other chapters, including Non-Euclidean Geometry, Projective Geometry, Finite Geometry, Differential Geometry, and Discrete Geometry, provide a broader view of geometry. The different chapters are as independent as possible, while the text still manages to highlight the many connections between topics. The text is self-contained, including appendices with the material in Euclid’s first book and a high school axiomatic system as well as Hilbert’s axioms. Appendices give brief summaries of the parts of linear algebra and multivariable calculus needed for certain chapters. While some chapters use the language of groups, no prior experience with abstract algebra is presumed. The text will support an approach emphasizing dynamical geometry software without being tied to any particular software.
Introduction to Projective Geometry
Author: C. R. Wylie
Publisher: Courier Corporation
ISBN: 0486141705
Category : Mathematics
Languages : en
Pages : 578
Book Description
This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include worked-through examples, introductions and summaries for each topic, and numerous theorems, proofs, and exercises that reinforce each chapter's precepts. Two helpful indexes conclude the text, along with answers to all odd-numbered exercises. In addition to its value to undergraduate students of mathematics, computer science, and secondary mathematics education, this volume provides an excellent reference for computer science professionals.
Publisher: Courier Corporation
ISBN: 0486141705
Category : Mathematics
Languages : en
Pages : 578
Book Description
This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include worked-through examples, introductions and summaries for each topic, and numerous theorems, proofs, and exercises that reinforce each chapter's precepts. Two helpful indexes conclude the text, along with answers to all odd-numbered exercises. In addition to its value to undergraduate students of mathematics, computer science, and secondary mathematics education, this volume provides an excellent reference for computer science professionals.
Mathematical Thought From Ancient to Modern Times, Volume 3
Author: Morris Kline
Publisher: Oxford University Press
ISBN: 0199840431
Category : Mathematics
Languages : en
Pages : 440
Book Description
This comprehensive history traces the development of mathematical ideas and the careers of the men responsible for them. Volume 1 looks at the disciplines origins in Babylon and Egypt, the creation of geometry and trigonometry by the Greeks, and the role of mathematics in the medieval and early modern periods. Volume 2 focuses on calculus, the rise of analysis in the 19th century, and the number theories of Dedekind and Dirichlet. The concluding volume covers the revival of projective geometry, the emergence of abstract algebra, the beginnings of topology, and the influence of Godel on recent mathematical study.
Publisher: Oxford University Press
ISBN: 0199840431
Category : Mathematics
Languages : en
Pages : 440
Book Description
This comprehensive history traces the development of mathematical ideas and the careers of the men responsible for them. Volume 1 looks at the disciplines origins in Babylon and Egypt, the creation of geometry and trigonometry by the Greeks, and the role of mathematics in the medieval and early modern periods. Volume 2 focuses on calculus, the rise of analysis in the 19th century, and the number theories of Dedekind and Dirichlet. The concluding volume covers the revival of projective geometry, the emergence of abstract algebra, the beginnings of topology, and the influence of Godel on recent mathematical study.
Mathematical Thought From Ancient to Modern Times
Author: Morris Kline
Publisher: OUP USA
ISBN: 9780195061376
Category : Mathematics
Languages : en
Pages : 452
Book Description
Traces the development of mathematics from its beginnings in Babylonia and ancient Egypt to the work of Riemann and Godel in modern times.
Publisher: OUP USA
ISBN: 9780195061376
Category : Mathematics
Languages : en
Pages : 452
Book Description
Traces the development of mathematics from its beginnings in Babylonia and ancient Egypt to the work of Riemann and Godel in modern times.
Exploring Geometry
Author: Michael Hvidsten
Publisher: CRC Press
ISBN: 1498760821
Category : Mathematics
Languages : en
Pages : 558
Book Description
Exploring Geometry, Second Edition promotes student engagement with the beautiful ideas of geometry. Every major concept is introduced in its historical context and connects the idea with real-life. A system of experimentation followed by rigorous explanation and proof is central. Exploratory projects play an integral role in this text. Students develop a better sense of how to prove a result and visualize connections between statements, making these connections real. They develop the intuition needed to conjecture a theorem and devise a proof of what they have observed. Features: Second edition of a successful textbook for the first undergraduate course Every major concept is introduced in its historical context and connects the idea with real life Focuses on experimentation Projects help enhance student learning All major software programs can be used; free software from author
Publisher: CRC Press
ISBN: 1498760821
Category : Mathematics
Languages : en
Pages : 558
Book Description
Exploring Geometry, Second Edition promotes student engagement with the beautiful ideas of geometry. Every major concept is introduced in its historical context and connects the idea with real-life. A system of experimentation followed by rigorous explanation and proof is central. Exploratory projects play an integral role in this text. Students develop a better sense of how to prove a result and visualize connections between statements, making these connections real. They develop the intuition needed to conjecture a theorem and devise a proof of what they have observed. Features: Second edition of a successful textbook for the first undergraduate course Every major concept is introduced in its historical context and connects the idea with real life Focuses on experimentation Projects help enhance student learning All major software programs can be used; free software from author
The Infinity Problem, Projective Geometry and Its Regional Subgeometries
Author: Sean Sheeter
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 298
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 298
Book Description
A Modern Introduction to Geometries
Author: Annita Tuller
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 236
Book Description
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 236
Book Description
Lie Sphere Geometry
Author: Thomas E. Cecil
Publisher: Springer Science & Business Media
ISBN: 1475740964
Category : Mathematics
Languages : en
Pages : 219
Book Description
Lie Sphere Geometry provides a modern treatment of Lie's geometry of spheres, its recent applications and the study of Euclidean space. This book begins with Lie's construction of the space of spheres, including the fundamental notions of oriented contact, parabolic pencils of spheres and Lie sphere transformation. The link with Euclidean submanifold theory is established via the Legendre map. This provides a powerful framework for the study of submanifolds, especially those characterized by restrictions on their curvature spheres. Of particular interest are isoparametric, Dupin and taut submanifolds. These have recently been classified up to Lie sphere transformation in certain special cases through the introduction of natural Lie invariants. The author provides complete proofs of these classifications and indicates directions for further research and wider application of these methods.
Publisher: Springer Science & Business Media
ISBN: 1475740964
Category : Mathematics
Languages : en
Pages : 219
Book Description
Lie Sphere Geometry provides a modern treatment of Lie's geometry of spheres, its recent applications and the study of Euclidean space. This book begins with Lie's construction of the space of spheres, including the fundamental notions of oriented contact, parabolic pencils of spheres and Lie sphere transformation. The link with Euclidean submanifold theory is established via the Legendre map. This provides a powerful framework for the study of submanifolds, especially those characterized by restrictions on their curvature spheres. Of particular interest are isoparametric, Dupin and taut submanifolds. These have recently been classified up to Lie sphere transformation in certain special cases through the introduction of natural Lie invariants. The author provides complete proofs of these classifications and indicates directions for further research and wider application of these methods.