Estimating Structural Models with Multiple Censored Variables

Estimating Structural Models with Multiple Censored Variables PDF Author: Jorge Cornick
Publisher:
ISBN:
Category :
Languages : en
Pages : 396

Get Book Here

Book Description

Estimating Structural Models with Multiple Censored Variables

Estimating Structural Models with Multiple Censored Variables PDF Author: Jorge Cornick
Publisher:
ISBN:
Category :
Languages : en
Pages : 396

Get Book Here

Book Description


Analysis of Observational Health Care Data Using SAS

Analysis of Observational Health Care Data Using SAS PDF Author: Douglas E. Faries
Publisher: SAS Press
ISBN: 9781607642275
Category : Medical care
Languages : en
Pages : 0

Get Book Here

Book Description
This book guides researchers in performing and presenting high-quality analyses of all kinds of non-randomized studies, including analyses of observational studies, claims database analyses, assessment of registry data, survey data, pharmaco-economic data, and many more applications. The text is sufficiently detailed to provide not only general guidance, but to help the researcher through all of the standard issues that arise in such analyses. Just enough theory is included to allow the reader to understand the pros and cons of alternative approaches and when to use each method. The numerous contributors to this book illustrate, via real-world numerical examples and SAS code, appropriate implementations of alternative methods. The end result is that researchers will learn how to present high-quality and transparent analyses that will lead to fair and objective decisions from observational data. This book is part of the SAS Press program.

Estimation of Models with Multiple Censored Variables Using Numerical Methods

Estimation of Models with Multiple Censored Variables Using Numerical Methods PDF Author: Carlos Arias
Publisher:
ISBN:
Category :
Languages : en
Pages : 324

Get Book Here

Book Description


Regression and Mediation Analysis Using Mplus

Regression and Mediation Analysis Using Mplus PDF Author: Bengt O. Muthen
Publisher:
ISBN: 9780982998311
Category :
Languages : en
Pages : 535

Get Book Here

Book Description


Flexible Imputation of Missing Data, Second Edition

Flexible Imputation of Missing Data, Second Edition PDF Author: Stef van Buuren
Publisher: CRC Press
ISBN: 0429960352
Category : Mathematics
Languages : en
Pages : 444

Get Book Here

Book Description
Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.

Structural Equation Modeling

Structural Equation Modeling PDF Author: Rick H. Hoyle
Publisher: SAGE
ISBN: 9780803953185
Category : Psychology
Languages : en
Pages : 316

Get Book Here

Book Description
Reviews some of the major issues facing researchers who wish to use structural equation modeling. This title includes individual chapters that present developments on specification, estimation and testing, statistical power, software comparisons and analyzing multitrait/multimethod data.

Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide

Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide PDF Author: Agency for Health Care Research and Quality (U.S.)
Publisher: Government Printing Office
ISBN: 1587634236
Category : Medical
Languages : en
Pages : 236

Get Book Here

Book Description
This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)

Nonparametric and Semiparametric Methods in Econometrics and Statistics

Nonparametric and Semiparametric Methods in Econometrics and Statistics PDF Author: William A. Barnett
Publisher: Cambridge University Press
ISBN: 9780521424318
Category : Business & Economics
Languages : en
Pages : 512

Get Book Here

Book Description
Papers from a 1988 symposium on the estimation and testing of models that impose relatively weak restrictions on the stochastic behaviour of data.

Statistical Models in Epidemiology, the Environment, and Clinical Trials

Statistical Models in Epidemiology, the Environment, and Clinical Trials PDF Author: M.Elizabeth Halloran
Publisher: Springer Science & Business Media
ISBN: 9780387989242
Category : Medical
Languages : en
Pages : 300

Get Book Here

Book Description
This IMA Volume in Mathematics and its Applications STATISTICAL MODELS IN EPIDEMIOLOGY, THE ENVIRONMENT,AND CLINICAL TRIALS is a combined proceedings on "Design and Analysis of Clinical Trials" and "Statistics and Epidemiology: Environment and Health. " This volume is the third series based on the proceedings of a very successful 1997 IMA Summer Program on "Statistics in the Health Sciences. " I would like to thank the organizers: M. Elizabeth Halloran of Emory University (Biostatistics) and Donald A. Berry of Duke University (Insti tute of Statistics and Decision Sciences and Cancer Center Biostatistics) for their excellent work as organizers of the meeting and for editing the proceedings. I am grateful to Seymour Geisser of University of Minnesota (Statistics), Patricia Grambsch, University of Minnesota (Biostatistics); Joel Greenhouse, Carnegie Mellon University (Statistics); Nicholas Lange, Harvard Medical School (Brain Imaging Center, McLean Hospital); Barry Margolin, University of North Carolina-Chapel Hill (Biostatistics); Sandy Weisberg, University of Minnesota (Statistics); Scott Zeger, Johns Hop kins University (Biostatistics); and Marvin Zelen, Harvard School of Public Health (Biostatistics) for organizing the six weeks summer program. I also take this opportunity to thank the National Science Foundation (NSF) and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr.

Mixed Effects Models for Complex Data

Mixed Effects Models for Complex Data PDF Author: Lang Wu
Publisher: CRC Press
ISBN: 9781420074086
Category : Mathematics
Languages : en
Pages : 431

Get Book Here

Book Description
Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.