Author: Xiaolong Li
Publisher: Springer Nature
ISBN: 9819705231
Category :
Languages : en
Pages : 2095
Book Description
Proceedings of the 7th International Conference on Economic Management and Green Development
Author: Xiaolong Li
Publisher: Springer Nature
ISBN: 9819705231
Category :
Languages : en
Pages : 2095
Book Description
Publisher: Springer Nature
ISBN: 9819705231
Category :
Languages : en
Pages : 2095
Book Description
Empirical Asset Pricing
Author: Wayne Ferson
Publisher: MIT Press
ISBN: 0262039370
Category : Business & Economics
Languages : en
Pages : 497
Book Description
An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.
Publisher: MIT Press
ISBN: 0262039370
Category : Business & Economics
Languages : en
Pages : 497
Book Description
An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.
Research Handbook of Financial Markets
Author: Refet S. Gürkaynak
Publisher: Edward Elgar Publishing
ISBN: 1800375328
Category : Business & Economics
Languages : en
Pages : 533
Book Description
The Research Handbook of Financial Markets carefully discusses the histories and current states of the most important financial markets and institutions, as well as explicitly underscoring open questions that need study. By describing the institutional structure of different markets and highlighting recent changes within them, it accurately highlights their evolving nature.
Publisher: Edward Elgar Publishing
ISBN: 1800375328
Category : Business & Economics
Languages : en
Pages : 533
Book Description
The Research Handbook of Financial Markets carefully discusses the histories and current states of the most important financial markets and institutions, as well as explicitly underscoring open questions that need study. By describing the institutional structure of different markets and highlighting recent changes within them, it accurately highlights their evolving nature.
Recent Applications of Financial Risk Modelling and Portfolio Management
Author: Škrinjari?, Tihana
Publisher: IGI Global
ISBN: 1799850846
Category : Business & Economics
Languages : en
Pages : 432
Book Description
In today’s financial market, portfolio and risk management are facing an array of challenges. This is due to increasing levels of knowledge and data that are being made available that have caused a multitude of different investment models to be explored and implemented. Professionals and researchers in this field are in need of up-to-date research that analyzes these contemporary models of practice and keeps pace with the advancements being made within financial risk modelling and portfolio control. Recent Applications of Financial Risk Modelling and Portfolio Management is a pivotal reference source that provides vital research on the use of modern data analysis as well as quantitative methods for developing successful portfolio and risk management techniques. While highlighting topics such as credit scoring, investment strategies, and budgeting, this publication explores diverse models for achieving investment goals as well as improving upon traditional financial modelling methods. This book is ideally designed for researchers, financial analysts, executives, practitioners, policymakers, academicians, and students seeking current research on contemporary risk management strategies in the financial sector.
Publisher: IGI Global
ISBN: 1799850846
Category : Business & Economics
Languages : en
Pages : 432
Book Description
In today’s financial market, portfolio and risk management are facing an array of challenges. This is due to increasing levels of knowledge and data that are being made available that have caused a multitude of different investment models to be explored and implemented. Professionals and researchers in this field are in need of up-to-date research that analyzes these contemporary models of practice and keeps pace with the advancements being made within financial risk modelling and portfolio control. Recent Applications of Financial Risk Modelling and Portfolio Management is a pivotal reference source that provides vital research on the use of modern data analysis as well as quantitative methods for developing successful portfolio and risk management techniques. While highlighting topics such as credit scoring, investment strategies, and budgeting, this publication explores diverse models for achieving investment goals as well as improving upon traditional financial modelling methods. This book is ideally designed for researchers, financial analysts, executives, practitioners, policymakers, academicians, and students seeking current research on contemporary risk management strategies in the financial sector.
Proceedings of the 2023 2nd International Conference on Artificial Intelligence, Internet and Digital Economy (ICAID 2023)
Author: K. Hemachandran
Publisher: Springer Nature
ISBN: 9464632224
Category : Computers
Languages : en
Pages : 576
Book Description
This is an open access book. With the continuous upgrading of network information technology, especially the combination of Internet - cloud computing - blockchain - Internet of things and other information technologies with social and economic activities, through the improvement of artificial intelligence, Internet and big data with high quality and fast processing efficiency, the economic form is transformed from industrial economy to information economy. This will greatly reduce social transaction costs, improve the efficiency of resource optimization, increase the added value of products, enterprises and industries, and promote the rapid development of social productivity. 2023 2nd International Conference on Artificial Intelligence, the Internet and the Digital Economy (ICAID 2023) will continue to focus on the latest research on "Artificial intelligence, the Internet and the Digital Economy", and expand the research on "technology and application of the integrated development of Digital Economy and Artificial Intelligence" as the theme. The aim is to gather experts, scholars, researchers and related practitioners from around the world to share research results, discuss hot issues, and provide participants with cutting-edge technology information so that they can keep abreast of industry developments, the latest technologies and broaden their research horizons. The conference was held in Beijing, China on April 21-23, 2023. All experts and scholars are welcome to attend.
Publisher: Springer Nature
ISBN: 9464632224
Category : Computers
Languages : en
Pages : 576
Book Description
This is an open access book. With the continuous upgrading of network information technology, especially the combination of Internet - cloud computing - blockchain - Internet of things and other information technologies with social and economic activities, through the improvement of artificial intelligence, Internet and big data with high quality and fast processing efficiency, the economic form is transformed from industrial economy to information economy. This will greatly reduce social transaction costs, improve the efficiency of resource optimization, increase the added value of products, enterprises and industries, and promote the rapid development of social productivity. 2023 2nd International Conference on Artificial Intelligence, the Internet and the Digital Economy (ICAID 2023) will continue to focus on the latest research on "Artificial intelligence, the Internet and the Digital Economy", and expand the research on "technology and application of the integrated development of Digital Economy and Artificial Intelligence" as the theme. The aim is to gather experts, scholars, researchers and related practitioners from around the world to share research results, discuss hot issues, and provide participants with cutting-edge technology information so that they can keep abreast of industry developments, the latest technologies and broaden their research horizons. The conference was held in Beijing, China on April 21-23, 2023. All experts and scholars are welcome to attend.
Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance
Author: El Bachir Boukherouaa
Publisher: International Monetary Fund
ISBN: 1589063953
Category : Business & Economics
Languages : en
Pages : 35
Book Description
This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.
Publisher: International Monetary Fund
ISBN: 1589063953
Category : Business & Economics
Languages : en
Pages : 35
Book Description
This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.
Machine Learning in Asset Pricing
Author: Stefan Nagel
Publisher: Princeton University Press
ISBN: 0691218706
Category : Business & Economics
Languages : en
Pages : 156
Book Description
A groundbreaking, authoritative introduction to how machine learning can be applied to asset pricing Investors in financial markets are faced with an abundance of potentially value-relevant information from a wide variety of different sources. In such data-rich, high-dimensional environments, techniques from the rapidly advancing field of machine learning (ML) are well-suited for solving prediction problems. Accordingly, ML methods are quickly becoming part of the toolkit in asset pricing research and quantitative investing. In this book, Stefan Nagel examines the promises and challenges of ML applications in asset pricing. Asset pricing problems are substantially different from the settings for which ML tools were developed originally. To realize the potential of ML methods, they must be adapted for the specific conditions in asset pricing applications. Economic considerations, such as portfolio optimization, absence of near arbitrage, and investor learning can guide the selection and modification of ML tools. Beginning with a brief survey of basic supervised ML methods, Nagel then discusses the application of these techniques in empirical research in asset pricing and shows how they promise to advance the theoretical modeling of financial markets. Machine Learning in Asset Pricing presents the exciting possibilities of using cutting-edge methods in research on financial asset valuation.
Publisher: Princeton University Press
ISBN: 0691218706
Category : Business & Economics
Languages : en
Pages : 156
Book Description
A groundbreaking, authoritative introduction to how machine learning can be applied to asset pricing Investors in financial markets are faced with an abundance of potentially value-relevant information from a wide variety of different sources. In such data-rich, high-dimensional environments, techniques from the rapidly advancing field of machine learning (ML) are well-suited for solving prediction problems. Accordingly, ML methods are quickly becoming part of the toolkit in asset pricing research and quantitative investing. In this book, Stefan Nagel examines the promises and challenges of ML applications in asset pricing. Asset pricing problems are substantially different from the settings for which ML tools were developed originally. To realize the potential of ML methods, they must be adapted for the specific conditions in asset pricing applications. Economic considerations, such as portfolio optimization, absence of near arbitrage, and investor learning can guide the selection and modification of ML tools. Beginning with a brief survey of basic supervised ML methods, Nagel then discusses the application of these techniques in empirical research in asset pricing and shows how they promise to advance the theoretical modeling of financial markets. Machine Learning in Asset Pricing presents the exciting possibilities of using cutting-edge methods in research on financial asset valuation.
Decision Economics: Minds, Machines, and their Society
Author: Edgardo Bucciarelli
Publisher: Springer Nature
ISBN: 3030755835
Category : Technology & Engineering
Languages : en
Pages : 287
Book Description
This book is the result of a multi-year research project led and sponsored by the University of Chieti-Pescara, National Chengchi University, University of Salamanca, and Osaka University. It is the fifth volume to emerge from that international project, held under the aegis of the United Nations Academic Impact in 2020. All the essays in this volume were (virtually) discussed at the University of L’Aquila―as the venue of the 2nd International Conference on Decision Economics, a three-day global gathering of approximately one hundred scholars and practitioners—and were subjected to thorough peer review by leading experts in the field. The essays reflect the extent, diversity, and richness of several research areas, both normative and descriptive, and are an invaluable resource for graduate-level and PhD students, academics, researchers, policymakers and other professionals, especially in the social and cognitive sciences. Given its interdisciplinary scope, the book subsequently delivers new approaches on how to contribute to the future of economics, providing alternative explanations for various socio-economic issues such as computable humanities; cognitive, behavioural, and experimental perspectives in economics; data analysis and machine learning as well as research areas at the intersection of computer science, artificial intelligence, mathematics, and statistics; agent-based modelling and the related. The editors are grateful to the scientific committee for its continuous support throughout the research project as well as to the many participants for their insightful comments and always probing questions. In any case, the collaboration involved in the project extends far beyond the group of authors published in this volume and is reflected in the quality of the essays published over the years.
Publisher: Springer Nature
ISBN: 3030755835
Category : Technology & Engineering
Languages : en
Pages : 287
Book Description
This book is the result of a multi-year research project led and sponsored by the University of Chieti-Pescara, National Chengchi University, University of Salamanca, and Osaka University. It is the fifth volume to emerge from that international project, held under the aegis of the United Nations Academic Impact in 2020. All the essays in this volume were (virtually) discussed at the University of L’Aquila―as the venue of the 2nd International Conference on Decision Economics, a three-day global gathering of approximately one hundred scholars and practitioners—and were subjected to thorough peer review by leading experts in the field. The essays reflect the extent, diversity, and richness of several research areas, both normative and descriptive, and are an invaluable resource for graduate-level and PhD students, academics, researchers, policymakers and other professionals, especially in the social and cognitive sciences. Given its interdisciplinary scope, the book subsequently delivers new approaches on how to contribute to the future of economics, providing alternative explanations for various socio-economic issues such as computable humanities; cognitive, behavioural, and experimental perspectives in economics; data analysis and machine learning as well as research areas at the intersection of computer science, artificial intelligence, mathematics, and statistics; agent-based modelling and the related. The editors are grateful to the scientific committee for its continuous support throughout the research project as well as to the many participants for their insightful comments and always probing questions. In any case, the collaboration involved in the project extends far beyond the group of authors published in this volume and is reflected in the quality of the essays published over the years.
The Economics of Artificial Intelligence
Author: Ajay Agrawal
Publisher: University of Chicago Press
ISBN: 0226833127
Category : Business & Economics
Languages : en
Pages : 172
Book Description
A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.
Publisher: University of Chicago Press
ISBN: 0226833127
Category : Business & Economics
Languages : en
Pages : 172
Book Description
A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 634
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 634
Book Description