Author: Dek Terrell
Publisher: Emerald Group Publishing
ISBN: 1789739578
Category : Business & Economics
Languages : en
Pages : 468
Book Description
Including contributions spanning a variety of theoretical and applied topics in econometrics, this volume of Advances in Econometrics is published in honour of Cheng Hsiao.
Essays in Honor of Cheng Hsiao
Author: Dek Terrell
Publisher: Emerald Group Publishing
ISBN: 1789739578
Category : Business & Economics
Languages : en
Pages : 468
Book Description
Including contributions spanning a variety of theoretical and applied topics in econometrics, this volume of Advances in Econometrics is published in honour of Cheng Hsiao.
Publisher: Emerald Group Publishing
ISBN: 1789739578
Category : Business & Economics
Languages : en
Pages : 468
Book Description
Including contributions spanning a variety of theoretical and applied topics in econometrics, this volume of Advances in Econometrics is published in honour of Cheng Hsiao.
Essays in Honor of Joon Y. Park
Author: Yoosoon Chang
Publisher: Emerald Group Publishing
ISBN: 1837532141
Category : Business & Economics
Languages : en
Pages : 382
Book Description
Volumes 45a and 45b of Advances in Econometrics honor Professor Joon Y. Park, who has made numerous and substantive contributions to the field of econometrics over a career spanning four decades since the 1980s and counting.
Publisher: Emerald Group Publishing
ISBN: 1837532141
Category : Business & Economics
Languages : en
Pages : 382
Book Description
Volumes 45a and 45b of Advances in Econometrics honor Professor Joon Y. Park, who has made numerous and substantive contributions to the field of econometrics over a career spanning four decades since the 1980s and counting.
Political Complexity
Author: Diana Eva-Ann Richards
Publisher: University of Michigan Press
ISBN: 0472026992
Category : Political Science
Languages : en
Pages : 243
Book Description
This collection illustrates how nonlinear methods can provide new insight into existing political questions. Politics is often characterized by unexpected consequences, sensitivity to small changes, non-equilibrium dynamics, the emergence of patterns, and sudden changes in outcomes. These are all attributes of nonlinear processes. Bringing together a variety of recent nonlinear modeling approaches, Political Complexity explores what happens when political actors operate in a dynamic and complex social environment. The contributions to this collection are organized in terms of three branches within non-linear theory: spatial nonlinearity, temporal nonlinearity, and functional nonlinearity. The chapters advance beyond analogy towards developing rigorous nonlinear models capable of empirical verification. Contributions to this volume cover the areas of landscape theory, computational modeling, time series analysis, cross-sectional analysis, dynamic game theory, duration models, neural networks, and hidden Markov models. They address such questions as: Is international cooperation necessary for effective economic sanctions? Is it possible to predict alliance configurations in the international system? Is a bureaucratic agency harder to remove as time goes on? Is it possible to predict which international crises will result in war and which will avoid conflict? Is decentralization in a federal system always beneficial? The contributors are David Bearce, Scott Bennett, Chris Brooks, Daniel Carpenter, Melvin Hinich, Ken Kollman, Susanne Lohmann, Walter Mebane, John Miller, Robert E. Molyneaux, Scott Page, Philip Schrodt, and Langche Zeng. This book will be of interest to a broad group of political scientists, ranging from those who employ nonlinear methods to those curious to see what it is about. Scholars in other social science disciplines will find the new methodologies insightful for their own substantive work. Diana Richards is Associate Professor of Political Science, University of Minnesota.
Publisher: University of Michigan Press
ISBN: 0472026992
Category : Political Science
Languages : en
Pages : 243
Book Description
This collection illustrates how nonlinear methods can provide new insight into existing political questions. Politics is often characterized by unexpected consequences, sensitivity to small changes, non-equilibrium dynamics, the emergence of patterns, and sudden changes in outcomes. These are all attributes of nonlinear processes. Bringing together a variety of recent nonlinear modeling approaches, Political Complexity explores what happens when political actors operate in a dynamic and complex social environment. The contributions to this collection are organized in terms of three branches within non-linear theory: spatial nonlinearity, temporal nonlinearity, and functional nonlinearity. The chapters advance beyond analogy towards developing rigorous nonlinear models capable of empirical verification. Contributions to this volume cover the areas of landscape theory, computational modeling, time series analysis, cross-sectional analysis, dynamic game theory, duration models, neural networks, and hidden Markov models. They address such questions as: Is international cooperation necessary for effective economic sanctions? Is it possible to predict alliance configurations in the international system? Is a bureaucratic agency harder to remove as time goes on? Is it possible to predict which international crises will result in war and which will avoid conflict? Is decentralization in a federal system always beneficial? The contributors are David Bearce, Scott Bennett, Chris Brooks, Daniel Carpenter, Melvin Hinich, Ken Kollman, Susanne Lohmann, Walter Mebane, John Miller, Robert E. Molyneaux, Scott Page, Philip Schrodt, and Langche Zeng. This book will be of interest to a broad group of political scientists, ranging from those who employ nonlinear methods to those curious to see what it is about. Scholars in other social science disciplines will find the new methodologies insightful for their own substantive work. Diana Richards is Associate Professor of Political Science, University of Minnesota.
Analysis of Financial Time Series
Author: Ruey S. Tsay
Publisher: Wiley-Interscience
ISBN: 9780471415442
Category : Business & Economics
Languages : en
Pages : 472
Book Description
Fundamental topics and new methods in time series analysis Analysis of Financial Time Series provides a comprehensive and systematic introduction to financial econometric models and their application to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: analysis and application of univariate financial time series; the return series of multiple assets; and Bayesian inference in finance methods. Timely topics and recent results include: Value at Risk (VaR) High-frequency financial data analysis Markov Chain Monte Carlo (MCMC) methods Derivative pricing using jump diffusion with closed-form formulas VaR calculation using extreme value theory based on a non-homogeneous two-dimensional Poisson process Multivariate volatility models with time-varying correlations Ideal as a fundamental introduction to time series for MBA students or as a reference for researchers and practitioners in business and finance, Analysis of Financial Time Series offers an in-depth and up-to-date account of these vital methods.
Publisher: Wiley-Interscience
ISBN: 9780471415442
Category : Business & Economics
Languages : en
Pages : 472
Book Description
Fundamental topics and new methods in time series analysis Analysis of Financial Time Series provides a comprehensive and systematic introduction to financial econometric models and their application to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: analysis and application of univariate financial time series; the return series of multiple assets; and Bayesian inference in finance methods. Timely topics and recent results include: Value at Risk (VaR) High-frequency financial data analysis Markov Chain Monte Carlo (MCMC) methods Derivative pricing using jump diffusion with closed-form formulas VaR calculation using extreme value theory based on a non-homogeneous two-dimensional Poisson process Multivariate volatility models with time-varying correlations Ideal as a fundamental introduction to time series for MBA students or as a reference for researchers and practitioners in business and finance, Analysis of Financial Time Series offers an in-depth and up-to-date account of these vital methods.
Time Series Modeling of Neuroscience Data
Author: Tohru Ozaki
Publisher: CRC Press
ISBN: 1420094610
Category : Mathematics
Languages : en
Pages : 561
Book Description
Recent advances in brain science measurement technology have given researchers access to very large-scale time series data such as EEG/MEG data (20 to 100 dimensional) and fMRI (140,000 dimensional) data. To analyze such massive data, efficient computational and statistical methods are required.Time Series Modeling of Neuroscience Data shows how to
Publisher: CRC Press
ISBN: 1420094610
Category : Mathematics
Languages : en
Pages : 561
Book Description
Recent advances in brain science measurement technology have given researchers access to very large-scale time series data such as EEG/MEG data (20 to 100 dimensional) and fMRI (140,000 dimensional) data. To analyze such massive data, efficient computational and statistical methods are required.Time Series Modeling of Neuroscience Data shows how to
Macroeconomic Forecasting in the Era of Big Data
Author: Peter Fuleky
Publisher: Springer Nature
ISBN: 3030311503
Category : Business & Economics
Languages : en
Pages : 716
Book Description
This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.
Publisher: Springer Nature
ISBN: 3030311503
Category : Business & Economics
Languages : en
Pages : 716
Book Description
This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.
Introduction to Time Series and Forecasting
Author: Peter J. Brockwell
Publisher: Springer Science & Business Media
ISBN: 1475725264
Category : Mathematics
Languages : en
Pages : 429
Book Description
Some of the key mathematical results are stated without proof in order to make the underlying theory acccessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introducitons are also given to cointegration and to non-linear, continuous-time and long-memory models. The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis.
Publisher: Springer Science & Business Media
ISBN: 1475725264
Category : Mathematics
Languages : en
Pages : 429
Book Description
Some of the key mathematical results are stated without proof in order to make the underlying theory acccessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introducitons are also given to cointegration and to non-linear, continuous-time and long-memory models. The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis.
The Function of Criticism at the Present Time
Author: Matthew Arnold
Publisher:
ISBN:
Category : Criticism
Languages : en
Pages : 172
Book Description
Publisher:
ISBN:
Category : Criticism
Languages : en
Pages : 172
Book Description
Analysis of Financial Time Series
Author: Ruey S. Tsay
Publisher: John Wiley & Sons
ISBN: 1118017099
Category : Mathematics
Languages : en
Pages : 724
Book Description
This book provides a broad, mature, and systematic introduction to current financial econometric models and their applications to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: Analysis and application of univariate financial time series The return series of multiple assets Bayesian inference in finance methods Key features of the new edition include additional coverage of modern day topics such as arbitrage, pair trading, realized volatility, and credit risk modeling; a smooth transition from S-Plus to R; and expanded empirical financial data sets. The overall objective of the book is to provide some knowledge of financial time series, introduce some statistical tools useful for analyzing these series and gain experience in financial applications of various econometric methods.
Publisher: John Wiley & Sons
ISBN: 1118017099
Category : Mathematics
Languages : en
Pages : 724
Book Description
This book provides a broad, mature, and systematic introduction to current financial econometric models and their applications to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: Analysis and application of univariate financial time series The return series of multiple assets Bayesian inference in finance methods Key features of the new edition include additional coverage of modern day topics such as arbitrage, pair trading, realized volatility, and credit risk modeling; a smooth transition from S-Plus to R; and expanded empirical financial data sets. The overall objective of the book is to provide some knowledge of financial time series, introduce some statistical tools useful for analyzing these series and gain experience in financial applications of various econometric methods.
Comparative Socialist Systems
Author: Carmelo Mesa-Lago
Publisher: University of Pittsburgh Pre
ISBN: 0822975254
Category : History
Languages : en
Pages : 467
Book Description
"The editors have merged work from two disciplines, economics and political science; in a summary conclusion, a sociologist suggests possible extensions in the comparison of socialist systems for the future. . . . contributes generously to the field."—Slavic Review
Publisher: University of Pittsburgh Pre
ISBN: 0822975254
Category : History
Languages : en
Pages : 467
Book Description
"The editors have merged work from two disciplines, economics and political science; in a summary conclusion, a sociologist suggests possible extensions in the comparison of socialist systems for the future. . . . contributes generously to the field."—Slavic Review