Author: Prof. Jan Hermans
Publisher: John Wiley & Sons
ISBN: 1118733770
Category : Science
Languages : en
Pages : 411
Book Description
Progressively builds a deep understanding of macromolecular behavior Based on each of the authors' roughly forty years of biophysics research and teaching experience, this text instills readers with a deep understanding of the biophysics of macromolecules. It sets a solid foundation in the basics by beginning with core physical concepts such as thermodynamics, quantum chemical models, molecular structure and interactions, and water and the hydrophobic effect. Next, the book examines statistical mechanics, protein-ligand binding, and conformational stability. Finally, the authors address kinetics and equilibria, exploring underlying theory, protein folding, and stochastic models. With its strong emphasis on molecular interactions, Equilibria and Kinetics of Biological Macromolecules offers new insights and perspectives on proteins and other macromolecules. The text features coverage of: Basic theory, applications, and new research findings Related topics in thermodynamics, quantum mechanics, statistical mechanics, and molecular simulations Principles and applications of molecular simulations in a dedicated chapter and interspersed throughout the text Macromolecular binding equilibria from the perspective of statistical mechanics Stochastic processes related to macromolecules Suggested readings at the end of each chapter include original research papers, reviews and monographs, enabling readers to explore individual topics in greater depth. At the end of the text, ten appendices offer refreshers on mathematical treatments, including probability, computational methods, Poisson equations, and defining molecular boundaries. With its classroom-tested pedagogical approach, Equilibria and Kinetics of Biological Macromolecules is recommended as a graduate-level textbook for biophysics courses and as a reference for researchers who want to strengthen their understanding of macromolecular behavior.
Equilibria and Kinetics of Biological Macromolecules
Author: Prof. Jan Hermans
Publisher: John Wiley & Sons
ISBN: 1118733770
Category : Science
Languages : en
Pages : 411
Book Description
Progressively builds a deep understanding of macromolecular behavior Based on each of the authors' roughly forty years of biophysics research and teaching experience, this text instills readers with a deep understanding of the biophysics of macromolecules. It sets a solid foundation in the basics by beginning with core physical concepts such as thermodynamics, quantum chemical models, molecular structure and interactions, and water and the hydrophobic effect. Next, the book examines statistical mechanics, protein-ligand binding, and conformational stability. Finally, the authors address kinetics and equilibria, exploring underlying theory, protein folding, and stochastic models. With its strong emphasis on molecular interactions, Equilibria and Kinetics of Biological Macromolecules offers new insights and perspectives on proteins and other macromolecules. The text features coverage of: Basic theory, applications, and new research findings Related topics in thermodynamics, quantum mechanics, statistical mechanics, and molecular simulations Principles and applications of molecular simulations in a dedicated chapter and interspersed throughout the text Macromolecular binding equilibria from the perspective of statistical mechanics Stochastic processes related to macromolecules Suggested readings at the end of each chapter include original research papers, reviews and monographs, enabling readers to explore individual topics in greater depth. At the end of the text, ten appendices offer refreshers on mathematical treatments, including probability, computational methods, Poisson equations, and defining molecular boundaries. With its classroom-tested pedagogical approach, Equilibria and Kinetics of Biological Macromolecules is recommended as a graduate-level textbook for biophysics courses and as a reference for researchers who want to strengthen their understanding of macromolecular behavior.
Publisher: John Wiley & Sons
ISBN: 1118733770
Category : Science
Languages : en
Pages : 411
Book Description
Progressively builds a deep understanding of macromolecular behavior Based on each of the authors' roughly forty years of biophysics research and teaching experience, this text instills readers with a deep understanding of the biophysics of macromolecules. It sets a solid foundation in the basics by beginning with core physical concepts such as thermodynamics, quantum chemical models, molecular structure and interactions, and water and the hydrophobic effect. Next, the book examines statistical mechanics, protein-ligand binding, and conformational stability. Finally, the authors address kinetics and equilibria, exploring underlying theory, protein folding, and stochastic models. With its strong emphasis on molecular interactions, Equilibria and Kinetics of Biological Macromolecules offers new insights and perspectives on proteins and other macromolecules. The text features coverage of: Basic theory, applications, and new research findings Related topics in thermodynamics, quantum mechanics, statistical mechanics, and molecular simulations Principles and applications of molecular simulations in a dedicated chapter and interspersed throughout the text Macromolecular binding equilibria from the perspective of statistical mechanics Stochastic processes related to macromolecules Suggested readings at the end of each chapter include original research papers, reviews and monographs, enabling readers to explore individual topics in greater depth. At the end of the text, ten appendices offer refreshers on mathematical treatments, including probability, computational methods, Poisson equations, and defining molecular boundaries. With its classroom-tested pedagogical approach, Equilibria and Kinetics of Biological Macromolecules is recommended as a graduate-level textbook for biophysics courses and as a reference for researchers who want to strengthen their understanding of macromolecular behavior.
Quantitative Fundamentals of Molecular and Cellular Bioengineering
Author: K. Dane Wittrup
Publisher: MIT Press
ISBN: 0262042657
Category : Science
Languages : en
Pages : 593
Book Description
A comprehensive presentation of essential topics for biological engineers, focusing on the development and application of dynamic models of biomolecular and cellular phenomena. This book describes the fundamental molecular and cellular events responsible for biological function, develops models to study biomolecular and cellular phenomena, and shows, with examples, how models are applied in the design and interpretation of experiments on biological systems. Integrating molecular cell biology with quantitative engineering analysis and design, it is the first textbook to offer a comprehensive presentation of these essential topics for chemical and biological engineering. The book systematically develops the concepts necessary to understand and study complex biological phenomena, moving from the simplest elements at the smallest scale and progressively adding complexity at the cellular organizational level, focusing on experimental testing of mechanistic hypotheses. After introducing the motivations for formulation of mathematical rate process models in biology, the text goes on to cover such topics as noncovalent binding interactions; quantitative descriptions of the transient, steady state, and equilibrium interactions of proteins and their ligands; enzyme kinetics; gene expression and protein trafficking; network dynamics; quantitative descriptions of growth dynamics; coupled transport and reaction; and discrete stochastic processes. The textbook is intended for advanced undergraduate and graduate courses in chemical engineering and bioengineering, and has been developed by the authors for classes they teach at MIT and the University of Minnesota.
Publisher: MIT Press
ISBN: 0262042657
Category : Science
Languages : en
Pages : 593
Book Description
A comprehensive presentation of essential topics for biological engineers, focusing on the development and application of dynamic models of biomolecular and cellular phenomena. This book describes the fundamental molecular and cellular events responsible for biological function, develops models to study biomolecular and cellular phenomena, and shows, with examples, how models are applied in the design and interpretation of experiments on biological systems. Integrating molecular cell biology with quantitative engineering analysis and design, it is the first textbook to offer a comprehensive presentation of these essential topics for chemical and biological engineering. The book systematically develops the concepts necessary to understand and study complex biological phenomena, moving from the simplest elements at the smallest scale and progressively adding complexity at the cellular organizational level, focusing on experimental testing of mechanistic hypotheses. After introducing the motivations for formulation of mathematical rate process models in biology, the text goes on to cover such topics as noncovalent binding interactions; quantitative descriptions of the transient, steady state, and equilibrium interactions of proteins and their ligands; enzyme kinetics; gene expression and protein trafficking; network dynamics; quantitative descriptions of growth dynamics; coupled transport and reaction; and discrete stochastic processes. The textbook is intended for advanced undergraduate and graduate courses in chemical engineering and bioengineering, and has been developed by the authors for classes they teach at MIT and the University of Minnesota.
Computers and Their Applications to Chemistry
Author: Ramesh Kumari
Publisher: CRC Press
ISBN: 9780849324208
Category : Computers
Languages : en
Pages : 284
Book Description
It's not just test tubes and Bunsen burners anymore. Computers now rank at or near the top of the list of a chemist's most indispensable tools, and it's safe to say that no chemistry student will get very far without a good working knowledge of computers and the concepts of computer programming. Designed specifically to ensure undergraduate chemistry students have this basic proficiency, Computers and Their Applications to Chemistry introduces the fundamentals of computers, then builds a solid foundation in programming using the BASIC programming language and simple examples from chemistry. The author's straightforward approach moves smoothly from simple to complex ideas, from elementary input/output statements through data string manipulation and searching methods to graphics and numerical methods. The last two chapters discuss a variety of available software packages particularly useful in chemistry. Each chapter includes a number of solved examples followed by a set of review questions that reinforce and stimulate interest in the ideas presented.
Publisher: CRC Press
ISBN: 9780849324208
Category : Computers
Languages : en
Pages : 284
Book Description
It's not just test tubes and Bunsen burners anymore. Computers now rank at or near the top of the list of a chemist's most indispensable tools, and it's safe to say that no chemistry student will get very far without a good working knowledge of computers and the concepts of computer programming. Designed specifically to ensure undergraduate chemistry students have this basic proficiency, Computers and Their Applications to Chemistry introduces the fundamentals of computers, then builds a solid foundation in programming using the BASIC programming language and simple examples from chemistry. The author's straightforward approach moves smoothly from simple to complex ideas, from elementary input/output statements through data string manipulation and searching methods to graphics and numerical methods. The last two chapters discuss a variety of available software packages particularly useful in chemistry. Each chapter includes a number of solved examples followed by a set of review questions that reinforce and stimulate interest in the ideas presented.
Equilibria and Dynamics of Gas Adsorption on Heterogeneous Solid Surfaces
Author: W.A. Steele
Publisher: Elsevier
ISBN: 0080531199
Category : Technology & Engineering
Languages : en
Pages : 909
Book Description
The fact that the surfaces of real solids are geometrically distorted and chemically non-uniform has long been realized by the scientists investigating various phenomena occurring on solid surfaces. Even in the case when diffraction experiments show a well-organized bulk solid structure, the surface atoms or molecules will usually exhibit a much smaller degree of surface organization. In addition to the results obtained from electron diffraction, this can be seen in the impressive images obtained from STM and AFM microscopies. This geometric and chemical disorder is the source of the energetic heterogeneity for molecules adsorbing on real solid surfaces. Hundreds of papers have been published showing that this heterogeneity is a major factor in determining the behaviour of real adsorption systems.Studies of adsorption on energetically heterogeneous surfaces have proceeded along three somewhat separate paths, with only minor coupling of ideas. One was the study of adsorption equilibria on heterogeneous solid surfaces. The second path was the study of time evolution of adsorption processes such as surface diffusion or adsorption-desorption kinetics on heterogeneous surfaces, and the third was the study of adsorption in porous solids, or more generally, adsorption in systems with limited dimensions. The present monograph is a first attempt to provide a synthesis of the ways that surface geometric and energetic heterogeneities affect both the equilibria and the time evolution of adsorption on real solids. The book contains 17 chapters written by a team of internationally recognized specialists, some of whom have already published books on adsorption.
Publisher: Elsevier
ISBN: 0080531199
Category : Technology & Engineering
Languages : en
Pages : 909
Book Description
The fact that the surfaces of real solids are geometrically distorted and chemically non-uniform has long been realized by the scientists investigating various phenomena occurring on solid surfaces. Even in the case when diffraction experiments show a well-organized bulk solid structure, the surface atoms or molecules will usually exhibit a much smaller degree of surface organization. In addition to the results obtained from electron diffraction, this can be seen in the impressive images obtained from STM and AFM microscopies. This geometric and chemical disorder is the source of the energetic heterogeneity for molecules adsorbing on real solid surfaces. Hundreds of papers have been published showing that this heterogeneity is a major factor in determining the behaviour of real adsorption systems.Studies of adsorption on energetically heterogeneous surfaces have proceeded along three somewhat separate paths, with only minor coupling of ideas. One was the study of adsorption equilibria on heterogeneous solid surfaces. The second path was the study of time evolution of adsorption processes such as surface diffusion or adsorption-desorption kinetics on heterogeneous surfaces, and the third was the study of adsorption in porous solids, or more generally, adsorption in systems with limited dimensions. The present monograph is a first attempt to provide a synthesis of the ways that surface geometric and energetic heterogeneities affect both the equilibria and the time evolution of adsorption on real solids. The book contains 17 chapters written by a team of internationally recognized specialists, some of whom have already published books on adsorption.
Macromolecules · 1
Author: H.G. Elias
Publisher: Springer Science & Business Media
ISBN: 146157367X
Category : Science
Languages : en
Pages : 554
Book Description
The second edition of this textbook is identical with its fourth German edi tion and it thus has the same goals: precise definition of basic phenomena, a broad survey of the whole field, integrated representation of chemistry, physics, and technology, and a balanced treatment of facts and comprehen sion. The book thus intends to bridge the gap between the often oversimpli fied introductory textbooks and the highly specialized texts and monographs that cover only parts of macromolecular science. The text intends to survey the whole field of macromolecular science. Its organization results from the following considerations. The chemical structure of macromolecular compounds should be inde pendent of the method of synthesis, at least in the ideal case. Part I is thus concerned with the chemical and physical structure of polymers. Properties depend on structure. Solution properties are thus discussed in Part 11, solid state properties in Part Ill. There are other reasons for dis cussing properties before synthesis: For example, it is difficult to understand equilibrium polymerization without knowledge of solution thermodynamics, the gel effect without knowledge of the glass transition temperature, etc. Part IV treats the principles of macromolecular syntheses and reactions.
Publisher: Springer Science & Business Media
ISBN: 146157367X
Category : Science
Languages : en
Pages : 554
Book Description
The second edition of this textbook is identical with its fourth German edi tion and it thus has the same goals: precise definition of basic phenomena, a broad survey of the whole field, integrated representation of chemistry, physics, and technology, and a balanced treatment of facts and comprehen sion. The book thus intends to bridge the gap between the often oversimpli fied introductory textbooks and the highly specialized texts and monographs that cover only parts of macromolecular science. The text intends to survey the whole field of macromolecular science. Its organization results from the following considerations. The chemical structure of macromolecular compounds should be inde pendent of the method of synthesis, at least in the ideal case. Part I is thus concerned with the chemical and physical structure of polymers. Properties depend on structure. Solution properties are thus discussed in Part 11, solid state properties in Part Ill. There are other reasons for dis cussing properties before synthesis: For example, it is difficult to understand equilibrium polymerization without knowledge of solution thermodynamics, the gel effect without knowledge of the glass transition temperature, etc. Part IV treats the principles of macromolecular syntheses and reactions.
General Catalog
Author: North Texas State University
Publisher:
ISBN:
Category :
Languages : en
Pages : 302
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 302
Book Description
Bulletin of Clarkson College of Technology
Author: Clarkson College of Technology
Publisher:
ISBN:
Category :
Languages : en
Pages : 108
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 108
Book Description
Physical Chemistry for the Life Sciences
Author: Peter Atkins
Publisher: Macmillan
ISBN: 1429231149
Category : Science
Languages : en
Pages : 618
Book Description
Peter Atkins and Julio de Paula offer a fully integrated approach to the study of physical chemistry and biology.
Publisher: Macmillan
ISBN: 1429231149
Category : Science
Languages : en
Pages : 618
Book Description
Peter Atkins and Julio de Paula offer a fully integrated approach to the study of physical chemistry and biology.
Comprehensive Biophysics
Author:
Publisher: Academic Press
ISBN: 0080957188
Category : Science
Languages : en
Pages : 3533
Book Description
Biophysics is a rapidly-evolving interdisciplinary science that applies theories and methods of the physical sciences to questions of biology. Biophysics encompasses many disciplines, including physics, chemistry, mathematics, biology, biochemistry, medicine, pharmacology, physiology, and neuroscience, and it is essential that scientists working in these varied fields are able to understand each other's research. Comprehensive Biophysics, Nine Volume Set will help bridge that communication gap. Written by a team of researchers at the forefront of their respective fields, under the guidance of Chief Editor Edward Egelman, Comprehensive Biophysics, Nine Volume Set provides definitive introductions to a broad array of topics, uniting different areas of biophysics research - from the physical techniques for studying macromolecular structure to protein folding, muscle and molecular motors, cell biophysics, bioenergetics and more. The result is this comprehensive scientific resource - a valuable tool both for helping researchers come to grips quickly with material from related biophysics fields outside their areas of expertise, and for reinforcing their existing knowledge. Biophysical research today encompasses many areas of biology. These studies do not necessarily share a unique identifying factor. This work unites the different areas of research and allows users, regardless of their background, to navigate through the most essential concepts with ease, saving them time and vastly improving their understanding The field of biophysics counts several journals that are directly and indirectly concerned with the field. There is no reference work that encompasses the entire field and unites the different areas of research through deep foundational reviews. Comprehensive Biophysics fills this vacuum, being a definitive work on biophysics. It will help users apply context to the diverse journal literature offering, and aid them in identifying areas for further research Chief Editor Edward Egelman (E-I-C, Biophysical Journal) has assembled an impressive, world-class team of Volume Editors and Contributing Authors. Each chapter has been painstakingly reviewed and checked for consistent high quality. The result is an authoritative overview which ties the literature together and provides the user with a reliable background information and citation resource
Publisher: Academic Press
ISBN: 0080957188
Category : Science
Languages : en
Pages : 3533
Book Description
Biophysics is a rapidly-evolving interdisciplinary science that applies theories and methods of the physical sciences to questions of biology. Biophysics encompasses many disciplines, including physics, chemistry, mathematics, biology, biochemistry, medicine, pharmacology, physiology, and neuroscience, and it is essential that scientists working in these varied fields are able to understand each other's research. Comprehensive Biophysics, Nine Volume Set will help bridge that communication gap. Written by a team of researchers at the forefront of their respective fields, under the guidance of Chief Editor Edward Egelman, Comprehensive Biophysics, Nine Volume Set provides definitive introductions to a broad array of topics, uniting different areas of biophysics research - from the physical techniques for studying macromolecular structure to protein folding, muscle and molecular motors, cell biophysics, bioenergetics and more. The result is this comprehensive scientific resource - a valuable tool both for helping researchers come to grips quickly with material from related biophysics fields outside their areas of expertise, and for reinforcing their existing knowledge. Biophysical research today encompasses many areas of biology. These studies do not necessarily share a unique identifying factor. This work unites the different areas of research and allows users, regardless of their background, to navigate through the most essential concepts with ease, saving them time and vastly improving their understanding The field of biophysics counts several journals that are directly and indirectly concerned with the field. There is no reference work that encompasses the entire field and unites the different areas of research through deep foundational reviews. Comprehensive Biophysics fills this vacuum, being a definitive work on biophysics. It will help users apply context to the diverse journal literature offering, and aid them in identifying areas for further research Chief Editor Edward Egelman (E-I-C, Biophysical Journal) has assembled an impressive, world-class team of Volume Editors and Contributing Authors. Each chapter has been painstakingly reviewed and checked for consistent high quality. The result is an authoritative overview which ties the literature together and provides the user with a reliable background information and citation resource
Molecular Biology
Author: Nancy Lynn Craig
Publisher:
ISBN: 0198788657
Category : Science
Languages : en
Pages : 1018
Book Description
Molecular Biology: Principles of Genome Function offers a fresh, distinctive approach to the teaching of molecular biology. It is an approach that reflects the challenge of teaching a subject that is in many ways unrecognizable from the molecular biology of the 20th century - a discipline in which our understanding has advanced immeasurably, but about which many questions remain to be answered.KEY FEATURESA focus on the underlying principles equips students with a robust conceptual framework on which to add further detail from the vast amount of scientific information available to us todayAn emphasis on commonalities reflects the conserved molecular processes and components that we now know to exist between bacteria, archaea and eukaryotesExperimental Approach panels demonstrate the central importance of experimental evidence to furthering our understanding of molecular biology by describing research that has been particularly valuable in elucidating different aspects of the subjectOnline resources, for both instructors and students alike, enhance the educational value of the textNEW TO THIS EDITIONNew content on epigenetics, targeted genome editing and pre-mRNA splicingCutting-edge scientific breakthroughs in CRISPR technology, including a description of newly defined steps in the molecular mechanisms underlying CRISPR-mediated adaptation in bacterial adaptive immunity; and a description of a recently discovered transposable element family whose integration mechanism is closely related to and involves molecular relatives of the CRISPR-Cas bacterial adaptive immunity systemEnhanced coverage of DNA replication and regulatory RNAsSeven new Experimental Approach panelsThis title is available as an eBook. Visit VitalSource for more information or to purchase.
Publisher:
ISBN: 0198788657
Category : Science
Languages : en
Pages : 1018
Book Description
Molecular Biology: Principles of Genome Function offers a fresh, distinctive approach to the teaching of molecular biology. It is an approach that reflects the challenge of teaching a subject that is in many ways unrecognizable from the molecular biology of the 20th century - a discipline in which our understanding has advanced immeasurably, but about which many questions remain to be answered.KEY FEATURESA focus on the underlying principles equips students with a robust conceptual framework on which to add further detail from the vast amount of scientific information available to us todayAn emphasis on commonalities reflects the conserved molecular processes and components that we now know to exist between bacteria, archaea and eukaryotesExperimental Approach panels demonstrate the central importance of experimental evidence to furthering our understanding of molecular biology by describing research that has been particularly valuable in elucidating different aspects of the subjectOnline resources, for both instructors and students alike, enhance the educational value of the textNEW TO THIS EDITIONNew content on epigenetics, targeted genome editing and pre-mRNA splicingCutting-edge scientific breakthroughs in CRISPR technology, including a description of newly defined steps in the molecular mechanisms underlying CRISPR-mediated adaptation in bacterial adaptive immunity; and a description of a recently discovered transposable element family whose integration mechanism is closely related to and involves molecular relatives of the CRISPR-Cas bacterial adaptive immunity systemEnhanced coverage of DNA replication and regulatory RNAsSeven new Experimental Approach panelsThis title is available as an eBook. Visit VitalSource for more information or to purchase.