Epitaxial Piezoelectric Thick Film Heterostructures on Silicon

Epitaxial Piezoelectric Thick Film Heterostructures on Silicon PDF Author: Dong Min Kim
Publisher:
ISBN:
Category :
Languages : en
Pages : 126

Get Book Here

Book Description

Epitaxial Piezoelectric Thick Film Heterostructures on Silicon

Epitaxial Piezoelectric Thick Film Heterostructures on Silicon PDF Author: Dong Min Kim
Publisher:
ISBN:
Category :
Languages : en
Pages : 126

Get Book Here

Book Description


Integration of Epitaxial Piezoelectric Thin Films on Silicon

Integration of Epitaxial Piezoelectric Thin Films on Silicon PDF Author: Shi Yin
Publisher:
ISBN:
Category :
Languages : en
Pages : 194

Get Book Here

Book Description
Recently, piezoelectric materials, like lead titanate zirconate Pb(ZrxTi1-x)O3 (PZT), zinc oxide ZnO, and the solid solution Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), increasingly receive intensive studies because of their innovative applications in the microelectromechanical systems (MEMS). In order to integrate them on silicon substrate, several preliminaries must be taken into considerations, e.g. buffer layer, bottom electrode. In this thesis, piezoelectric films (PZT and PMN-PT) have been successfully epitaxially grown on silicon and SOI (silicon-on-insulator) in the form of single crystal by sol-gel process. In fact, recent studies show that single crystalline films seem to possess the superior properties than that of polycrystalline films, leading to an increase of the performance of MEMS devices. The first objective of this thesis was to realize the epitaxial growth of single crystalline film of piezoelectric materials on silicon. The use of a buffer layer of gadolinium oxide(Gd2O3) or strontium titanate (SrTiO3 or STO) deposited by molecular beam epitaxy (MBE) has been studied in detail to integrate epitaxial PZT and PMN-PT films on silicon. For Gd2O3/Si(111) system, the study of X-ray diffraction (XRD) on the growth of PZT film shows that the film is polycrystalline with coexistence of the nonferroelectric parasite phase, i.e. pyrochlore phase. On the other hand, the PZT film deposited on STO/Si(001) substrate is successfully epitaxially grown in the form of single crystalline film. In order to measure the electrical properties, a layer of strontium ruthenate (SrRuO3 or SRO) deposited by pulsed laser deposition (PLD) has been employed for bottom electrode due to its excellent conductivity and perovskite crystalline structure similar to that of PZT. The electrical characterization on Ru/PZT/SRO capacitors demonstrates good ferroelectric properties with the presence of hysteresis loop. Besides, the relaxor ferroelectric PMN-PT has been also epitaxially grown on STO/Si and confirmed by XRD and transmission electrical microscopy (TEM). This single crystalline film has the perovskite phase without the appearance of pyrochlore. Moreover, the study of infrared transmission using synchrotron radiation has proven a diffused phase transition over a large range of temperature, indicating a typical relaxor ferroelectric material. The other interesting in the single crystalline PZT films deposited on silicon and SOI is to employ them in the application of MEMS devices, where the standard silicon techniques are used. The microfabrication process performed in the cleanroom has permitted to realize cantilevers and membranes in order to mechanically characterize the piezoelectric layers. Mechanical deflection under the application of an electric voltage could be detected by interferometry. Eventually, this characterization by interferometry has been studied using the modeling based on finite element method and analytic method. In the future, it will be necessary to optimize the microfabrication process of MEMS devices based on single crystalline piezoelectric films in order to ameliorate the electromechanical performance. Finally, the characterizations at MEMS device level must be developed for their utilization in the future applications.

SiGe and Si Strained-Layer Epitaxy for Silicon Heterostructure Devices

SiGe and Si Strained-Layer Epitaxy for Silicon Heterostructure Devices PDF Author: John D. Cressler
Publisher: CRC Press
ISBN: 1420066862
Category : Technology & Engineering
Languages : en
Pages : 264

Get Book Here

Book Description
What seems routine today was not always so. The field of Si-based heterostructures rests solidly on the shoulders of materials scientists and crystal growers, those purveyors of the semiconductor “black arts” associated with the deposition of pristine films of nanoscale dimensionality onto enormous Si wafers with near infinite precision. We can now grow near-defect free, nanoscale films of Si and SiGe strained-layer epitaxy compatible with conventional high-volume silicon integrated circuit manufacturing. SiGe and Si Strained-Layer Epitaxy for Silicon Heterostructure Devices tells the materials side of the story and details the many advances in the Si-SiGe strained-layer epitaxy for device applications. Drawn from the comprehensive and well-reviewed Silicon Heterostructure Handbook, this volume defines and details the many advances in the Si/SiGe strained-layer epitaxy for device applications. Mining the talents of an international panel of experts, the book covers modern SiGe epitaxial growth techniques, epi defects and dopant diffusion in thin films, stability constraints, and electronic properties of SiGe, strained Si, and Si-C alloys. It includes appendices on topics such as the properties of Si and Ge, the generalized Moll-Ross relations, integral charge-control relations, and sample SiGe HBT compact model parameters.

Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 902

Get Book Here

Book Description


Epitaxy and Applications of Si-Based Heterostructures: Volume 533

Epitaxy and Applications of Si-Based Heterostructures: Volume 533 PDF Author: Eugene A. Fitzgerald
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 414

Get Book Here

Book Description
The April 13-17, 1998 symposium held in San Francisco offered an intriguing mix of SiGe device and circuit technology, and the latest developments in SiGE materials and SiGeC alloys. The 53 papers pivot around the themes of: technologies and devices; devices, processing, and characterization; photonics and optoelectronics; epitaxy of quantum structures; SiGeC alloys; and epitaxy of SiGe/ related materials. A sample title from each of the six parts includes: carrier transport and velocity overshoot in strained Si on SiGe heterostructures, device and fabrication issues of high-performance Si/SiGe FETS, photonic crystals based on macroporous silicon, stacked layers of self-assembled Ge islands, photoluminescence in strain compensated Si/SiGeC multiple quantum wells, and a novel layer-by-layer heteroepitaxy of germanium on silicon (100) surface. Annotation copyrighted by Book News, Inc., Portland, OR

Epitaxial Silicon Technology

Epitaxial Silicon Technology PDF Author: B Baliga
Publisher: Elsevier
ISBN: 0323155456
Category : Technology & Engineering
Languages : en
Pages : 337

Get Book Here

Book Description
Epitaxial Silicon Technology is a single-volume, in-depth review of all the silicon epitaxial growth techniques. This technology is being extended to the growth of epitaxial layers on insulating substrates by means of a variety of lateral seeding approaches. This book is divided into five chapters, and the opening chapter describes the growth of silicon layers by vapor-phase epitaxy, considering both atmospheric and low-pressure growth. The second chapter discusses molecular-beam epitaxial growth of silicon, providing a unique ability to grow very thin layers with precisely controlled doping characteristics. The third chapter introduces the silicon liquid-phase epitaxy, in which the growth of silicon layers arose from a need to decrease the growth temperature and to suppress autodoping. The fourth chapter addresses the growth of silicon on sapphire for improving the radiation hardness of CMOS integrated circuits. The fifth chapter deals with the advances in the application of silicon epitaxial growth. This chapter also discusses the formation of epitaxial layers of silicon on insulators, such as silicon dioxide, which do not provide a natural single crystal surface for growth. Each chapter begins with a discussion on the fundamental transport mechanisms and the kinetics governing the growth rate, followed by a description of the electrical properties that can be achieved in the layers and the restrictions imposed by the growth technique upon the control over its electrical characteristics. Each chapter concludes with a discussion on the applications of the particular growth technique. This reference material will be useful for process technologists and engineers who may need to apply epitaxial growth for device fabrication.

Strained Silicon Heterostructures

Strained Silicon Heterostructures PDF Author: C. K. Maiti
Publisher: IET
ISBN: 9780852967782
Category : Technology & Engineering
Languages : en
Pages : 520

Get Book Here

Book Description
This book comprehensively covers the areas of materials growth, characterisation and descriptions for the new devices in siliconheterostructure material systems. In recent years, the development of powerful epitaxial growth techniques such as molecular beam epitaxy (MBE), ultra-high vacuum chemical vapour deposition (UHVCVD) and other low temperature epitaxy techniques has given rise to a new area of research of bandgap engineering in silicon-based materials. This has paved the way not only for heterojunction bipolar and field effect transistors, but also for other fascinating novel quantum devices. This book provides an excellent introduction and valuable references for postgraduate students and research scientists.

Epitaxial Oxide Thin Films and Heterostructures

Epitaxial Oxide Thin Films and Heterostructures PDF Author:
Publisher:
ISBN:
Category : Dielectrics
Languages : en
Pages : 514

Get Book Here

Book Description


Mechanics of Advanced Functional Materials

Mechanics of Advanced Functional Materials PDF Author: Biao Wang
Publisher: Springer Science & Business Media
ISBN: 3642335969
Category : Science
Languages : en
Pages : 537

Get Book Here

Book Description
Mechanics of Advanced Functional Materials emphasizes the coupling effect between the electric and mechanical field in the piezoelectric, ferroelectric and other functional materials. It also discusses the size effect on the ferroelectric domain instability and phase transition behaviors using the continuum micro-structural evolution models. Functional materials usually have a very wide application in engineering due to their unique thermal, electric, magnetic, optoelectronic, etc., functions. Almost all the applications demand that the material should have reasonable stiffness, strength, fracture toughness and the other mechanical properties. Furthermore, usually the stress and strain fields on the functional materials and devices have some important coupling effect on the functionality of the materials. Much progress has been made concerning the coupling electric and mechanical behaviors such as the coupled electric and stress field distribution in piezoelectric solids, ferroelectric domain patterns in ferroelectrics, fracture and failure properties under coupled electric and stress field, etc. The book is intended for researchers and postgraduate students in the fields of mechanics, materials sciences and applied physics who are interested to work on the interdisciplinary mathematical modeling of the functional materials. Prof. Biao Wang is the Dean of School of Physics and Engineering of the Sun Yat-sen University, China.

Epitaxial Oxide Thin Films II: Volume 401

Epitaxial Oxide Thin Films II: Volume 401 PDF Author: James S. Speck
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 588

Get Book Here

Book Description
Our understanding and control of epitaxial oxide heterostructures has progressed along multiple frontiers including magnetic, dielectric, ferroelectric, and superconducting oxide materials. This has resulted in both independent rediscovery and the successful borrowing of ideas from ceramic science, solid-state physics, and semiconductor epitaxy. A new field of materials science has emerged which aims at the use of the intrinsic properties of various oxide materials in single-crystal thin-film form. Exploiting the potential of these materials, however, will only be possible if many fundamental and engineering questions can be answered. This book represents continued progress toward fulfilling that promise. Technical information on epitaxial oxide thin films from industry, academia and government laboratories is presented. Topics include: dielectrics; ferroelectrics; optics; superconductors; magnetics; magnetoresistance.