Author: Hans Hermes
Publisher: Springer Science & Business Media
ISBN: 3642461786
Category : Mathematics
Languages : en
Pages : 260
Book Description
Once we have accepted a precise replacement of the concept of algo rithm, it becomes possible to attempt the problem whether there exist well-defined collections of problems which cannot be handled by algo rithms, and if that is the case, to give concrete cases of this kind. Many such investigations were carried out during the last few decades. The undecidability of arithmetic and other mathematical theories was shown, further the unsolvability of the word problem of group theory. Many mathematicians consider these results and the theory on which they are based to be the most characteristic achievements of mathe matics in the first half of the twentieth century. If we grant the legitimacy of the suggested precise replacements of the concept of algorithm and related concepts, then we can say that the mathematicians have shown by strictly mathematical methods that there exist mathematical problems which cannot be dealt with by the methods of calculating mathematics. In view of the important role which mathematics plays today in our conception of the world this fact is of great philosophical interest. Post speaks of a natural law about the "limitations of the mathematicizing power of Homo Sapiens". Here we also find a starting point for the discussion of the question, what the actual creative activity of the mathematician consists in. In this book we shall give an introduction to the theory of algorithms.
Enumerability · Decidability Computability
Author: Hans Hermes
Publisher: Springer Science & Business Media
ISBN: 3642461786
Category : Mathematics
Languages : en
Pages : 260
Book Description
Once we have accepted a precise replacement of the concept of algo rithm, it becomes possible to attempt the problem whether there exist well-defined collections of problems which cannot be handled by algo rithms, and if that is the case, to give concrete cases of this kind. Many such investigations were carried out during the last few decades. The undecidability of arithmetic and other mathematical theories was shown, further the unsolvability of the word problem of group theory. Many mathematicians consider these results and the theory on which they are based to be the most characteristic achievements of mathe matics in the first half of the twentieth century. If we grant the legitimacy of the suggested precise replacements of the concept of algorithm and related concepts, then we can say that the mathematicians have shown by strictly mathematical methods that there exist mathematical problems which cannot be dealt with by the methods of calculating mathematics. In view of the important role which mathematics plays today in our conception of the world this fact is of great philosophical interest. Post speaks of a natural law about the "limitations of the mathematicizing power of Homo Sapiens". Here we also find a starting point for the discussion of the question, what the actual creative activity of the mathematician consists in. In this book we shall give an introduction to the theory of algorithms.
Publisher: Springer Science & Business Media
ISBN: 3642461786
Category : Mathematics
Languages : en
Pages : 260
Book Description
Once we have accepted a precise replacement of the concept of algo rithm, it becomes possible to attempt the problem whether there exist well-defined collections of problems which cannot be handled by algo rithms, and if that is the case, to give concrete cases of this kind. Many such investigations were carried out during the last few decades. The undecidability of arithmetic and other mathematical theories was shown, further the unsolvability of the word problem of group theory. Many mathematicians consider these results and the theory on which they are based to be the most characteristic achievements of mathe matics in the first half of the twentieth century. If we grant the legitimacy of the suggested precise replacements of the concept of algorithm and related concepts, then we can say that the mathematicians have shown by strictly mathematical methods that there exist mathematical problems which cannot be dealt with by the methods of calculating mathematics. In view of the important role which mathematics plays today in our conception of the world this fact is of great philosophical interest. Post speaks of a natural law about the "limitations of the mathematicizing power of Homo Sapiens". Here we also find a starting point for the discussion of the question, what the actual creative activity of the mathematician consists in. In this book we shall give an introduction to the theory of algorithms.
Enumerability, Decidability, Computability
Author: Hans Hermes
Publisher: Springer
ISBN: 3662116863
Category : Mathematics
Languages : en
Pages : 255
Book Description
The task of developing algorithms to solve problems has always been considered by mathematicians to be an especially interesting and im portant one. Normally an algorithm is applicable only to a narrowly limited group of problems. Such is for instance the Euclidean algorithm, which determines the greatest common divisor of two numbers, or the well-known procedure which is used to obtain the square root of a natural number in decimal notation. The more important these special algorithms are, all the more desirable it seems to have algorithms of a greater range of applicability at one's disposal. Throughout the centuries, attempts to provide algorithms applicable as widely as possible were rather unsuc cessful. It was only in the second half of the last century that the first appreciable advance took place. Namely, an important group of the inferences of the logic of predicates was given in the form of a calculus. (Here the Boolean algebra played an essential pioneer role. ) One could now perhaps have conjectured that all mathematical problems are solvable by algorithms. However, well-known, yet unsolved problems (problems like the word problem of group theory or Hilbert's tenth problem, which considers the question of solvability of Diophantine equations) were warnings to be careful. Nevertheless, the impulse had been given to search for the essence of algorithms. Leibniz already had inquired into this problem, but without success.
Publisher: Springer
ISBN: 3662116863
Category : Mathematics
Languages : en
Pages : 255
Book Description
The task of developing algorithms to solve problems has always been considered by mathematicians to be an especially interesting and im portant one. Normally an algorithm is applicable only to a narrowly limited group of problems. Such is for instance the Euclidean algorithm, which determines the greatest common divisor of two numbers, or the well-known procedure which is used to obtain the square root of a natural number in decimal notation. The more important these special algorithms are, all the more desirable it seems to have algorithms of a greater range of applicability at one's disposal. Throughout the centuries, attempts to provide algorithms applicable as widely as possible were rather unsuc cessful. It was only in the second half of the last century that the first appreciable advance took place. Namely, an important group of the inferences of the logic of predicates was given in the form of a calculus. (Here the Boolean algebra played an essential pioneer role. ) One could now perhaps have conjectured that all mathematical problems are solvable by algorithms. However, well-known, yet unsolved problems (problems like the word problem of group theory or Hilbert's tenth problem, which considers the question of solvability of Diophantine equations) were warnings to be careful. Nevertheless, the impulse had been given to search for the essence of algorithms. Leibniz already had inquired into this problem, but without success.
Computability and Decidability
Author: J. Loeckx
Publisher: Springer Science & Business Media
ISBN: 3642806899
Category : Computers
Languages : en
Pages : 84
Book Description
The present Lecture Notes evolved from a course given at the Technische Hogeschool Eindhoven and later at the Technische Hogeschool Twente. They are intended for computer science students; more specifically, their goal is to introduce the notions of computability and decidability, and to prepare for the study of automata theory, formal language theory and the theory of computing. Except for a general mathematical background no preliminary knowledge is presupposed, but some experience in programming may be helpful. While classical treatises on computability and decidability are oriented towards the foundation of mathematics or mathematical logic, the present notes try to relate the subject to computer science. Therefore, the expose is based on the use of strings rather than on that of natural numbers; the notations are similar to those in use in automata theory; in addition, according to a common usage in formal language theory, most of the proofs of computability are reduced to the semi-formal description of a procedure the constructivity of which is apparent to anybody having some programming experience. Notwithstanding these facts the subject is treated with mathematical rigor; a great number of informal comments are inserted in order to allow a good intuitive understanding. I am indebted to all those who drew my attention to some errors and ambiguities in a preliminary version of these Notes. I want also to thank Miss L.A. Krukerink for her diligence in typing the manuscript.
Publisher: Springer Science & Business Media
ISBN: 3642806899
Category : Computers
Languages : en
Pages : 84
Book Description
The present Lecture Notes evolved from a course given at the Technische Hogeschool Eindhoven and later at the Technische Hogeschool Twente. They are intended for computer science students; more specifically, their goal is to introduce the notions of computability and decidability, and to prepare for the study of automata theory, formal language theory and the theory of computing. Except for a general mathematical background no preliminary knowledge is presupposed, but some experience in programming may be helpful. While classical treatises on computability and decidability are oriented towards the foundation of mathematics or mathematical logic, the present notes try to relate the subject to computer science. Therefore, the expose is based on the use of strings rather than on that of natural numbers; the notations are similar to those in use in automata theory; in addition, according to a common usage in formal language theory, most of the proofs of computability are reduced to the semi-formal description of a procedure the constructivity of which is apparent to anybody having some programming experience. Notwithstanding these facts the subject is treated with mathematical rigor; a great number of informal comments are inserted in order to allow a good intuitive understanding. I am indebted to all those who drew my attention to some errors and ambiguities in a preliminary version of these Notes. I want also to thank Miss L.A. Krukerink for her diligence in typing the manuscript.
Computability Theory
Author: Neil D. Jones
Publisher: Academic Press
ISBN: 1483218481
Category : Mathematics
Languages : en
Pages : 169
Book Description
Computability Theory: An Introduction provides information pertinent to the major concepts, constructions, and theorems of the elementary theory of computability of recursive functions. This book provides mathematical evidence for the validity of the Church–Turing thesis. Organized into six chapters, this book begins with an overview of the concept of effective process so that a clear understanding of the effective computability of partial and total functions is obtained. This text then introduces a formal development of the equivalence of Turing machine computability, enumerability, and decidability with other formulations. Other chapters consider the formulas of the predicate calculus, systems of recursion equations, and Post's production systems. This book discusses as well the fundamental properties of the partial recursive functions and the recursively enumerable sets. The final chapter deals with different formulations of the basic ideas of computability that are equivalent to Turing-computability. This book is a valuable resource for undergraduate or graduate students.
Publisher: Academic Press
ISBN: 1483218481
Category : Mathematics
Languages : en
Pages : 169
Book Description
Computability Theory: An Introduction provides information pertinent to the major concepts, constructions, and theorems of the elementary theory of computability of recursive functions. This book provides mathematical evidence for the validity of the Church–Turing thesis. Organized into six chapters, this book begins with an overview of the concept of effective process so that a clear understanding of the effective computability of partial and total functions is obtained. This text then introduces a formal development of the equivalence of Turing machine computability, enumerability, and decidability with other formulations. Other chapters consider the formulas of the predicate calculus, systems of recursion equations, and Post's production systems. This book discusses as well the fundamental properties of the partial recursive functions and the recursively enumerable sets. The final chapter deals with different formulations of the basic ideas of computability that are equivalent to Turing-computability. This book is a valuable resource for undergraduate or graduate students.
Computability and Logic
Author: George S. Boolos
Publisher: Cambridge University Press
ISBN: 0521877520
Category : Computers
Languages : en
Pages : 365
Book Description
This fifth edition of 'Computability and Logic' covers not just the staple topics of an intermediate logic course such as Godel's incompleteness theorems, but also optional topics that include Turing's theory of computability and Ramsey's theorem.
Publisher: Cambridge University Press
ISBN: 0521877520
Category : Computers
Languages : en
Pages : 365
Book Description
This fifth edition of 'Computability and Logic' covers not just the staple topics of an intermediate logic course such as Godel's incompleteness theorems, but also optional topics that include Turing's theory of computability and Ramsey's theorem.
Mathematical Logic
Author: H.-D. Ebbinghaus
Publisher: Springer Science & Business Media
ISBN: 1475723555
Category : Mathematics
Languages : en
Pages : 290
Book Description
This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.
Publisher: Springer Science & Business Media
ISBN: 1475723555
Category : Mathematics
Languages : en
Pages : 290
Book Description
This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.
Computability and Complexity
Author: Neil D. Jones
Publisher: MIT Press
ISBN: 9780262100649
Category : Computers
Languages : en
Pages : 494
Book Description
Computability and complexity theory should be of central concern to practitioners as well as theorists. Unfortunately, however, the field is known for its impenetrability. Neil Jones's goal as an educator and author is to build a bridge between computability and complexity theory and other areas of computer science, especially programming. In a shift away from the Turing machine- and G�del number-oriented classical approaches, Jones uses concepts familiar from programming languages to make computability and complexity more accessible to computer scientists and more applicable to practical programming problems. According to Jones, the fields of computability and complexity theory, as well as programming languages and semantics, have a great deal to offer each other. Computability and complexity theory have a breadth, depth, and generality not often seen in programming languages. The programming language community, meanwhile, has a firm grasp of algorithm design, presentation, and implementation. In addition, programming languages sometimes provide computational models that are more realistic in certain crucial aspects than traditional models. New results in the book include a proof that constant time factors do matter for its programming-oriented model of computation. (In contrast, Turing machines have a counterintuitive "constant speedup" property: that almost any program can be made to run faster, by any amount. Its proof involves techniques irrelevant to practice.) Further results include simple characterizations in programming terms of the central complexity classes PTIME and LOGSPACE, and a new approach to complete problems for NLOGSPACE, PTIME, NPTIME, and PSPACE, uniformly based on Boolean programs. Foundations of Computing series
Publisher: MIT Press
ISBN: 9780262100649
Category : Computers
Languages : en
Pages : 494
Book Description
Computability and complexity theory should be of central concern to practitioners as well as theorists. Unfortunately, however, the field is known for its impenetrability. Neil Jones's goal as an educator and author is to build a bridge between computability and complexity theory and other areas of computer science, especially programming. In a shift away from the Turing machine- and G�del number-oriented classical approaches, Jones uses concepts familiar from programming languages to make computability and complexity more accessible to computer scientists and more applicable to practical programming problems. According to Jones, the fields of computability and complexity theory, as well as programming languages and semantics, have a great deal to offer each other. Computability and complexity theory have a breadth, depth, and generality not often seen in programming languages. The programming language community, meanwhile, has a firm grasp of algorithm design, presentation, and implementation. In addition, programming languages sometimes provide computational models that are more realistic in certain crucial aspects than traditional models. New results in the book include a proof that constant time factors do matter for its programming-oriented model of computation. (In contrast, Turing machines have a counterintuitive "constant speedup" property: that almost any program can be made to run faster, by any amount. Its proof involves techniques irrelevant to practice.) Further results include simple characterizations in programming terms of the central complexity classes PTIME and LOGSPACE, and a new approach to complete problems for NLOGSPACE, PTIME, NPTIME, and PSPACE, uniformly based on Boolean programs. Foundations of Computing series
Computability
Author: Richard L Epstein
Publisher: Advanced Reasoning Forum
ISBN: 0981550738
Category : Mathematics
Languages : en
Pages : 382
Book Description
Now in a new edition!--the classic presentation of the theory of computable functions in the context of the foundations of mathematics. Part I motivates the study of computability with discussions and readings about the crisis in the foundations of mathematics in the early 20th century while presenting the basic ideas of whole number, function, proof, and real number. Part II starts with readings from Turing and Post leading to the formal theory of recursive functions. Part III presents sufficient formal logic to give a full development of Gödel's incompleteness theorems. Part IV considers the significance of the technical work with a discussion of Church's Thesis and readings on the foundations of mathematics. This new edition contains the timeline "Computability and Undecidability" as well as the essay "On mathematics".
Publisher: Advanced Reasoning Forum
ISBN: 0981550738
Category : Mathematics
Languages : en
Pages : 382
Book Description
Now in a new edition!--the classic presentation of the theory of computable functions in the context of the foundations of mathematics. Part I motivates the study of computability with discussions and readings about the crisis in the foundations of mathematics in the early 20th century while presenting the basic ideas of whole number, function, proof, and real number. Part II starts with readings from Turing and Post leading to the formal theory of recursive functions. Part III presents sufficient formal logic to give a full development of Gödel's incompleteness theorems. Part IV considers the significance of the technical work with a discussion of Church's Thesis and readings on the foundations of mathematics. This new edition contains the timeline "Computability and Undecidability" as well as the essay "On mathematics".
Enumerability. Decidability. Computability
Author: Hans Hermes
Publisher:
ISBN:
Category :
Languages : en
Pages : 245
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 245
Book Description
Machines and Thought
Author: Peter Millican
Publisher: Oxford University Press
ISBN: 0191001961
Category : Philosophy
Languages : en
Pages : 309
Book Description
This is the first of two volumes of essays in commemoration of Alan Turing, whose pioneering work in the theory of artificial intelligence and computer science continues to be widely discussed today. A group of prominent academics from a wide range of disciplines focus on three questions famously raised by Turing: What, if any, are the limits on machine 'thinking'? Could a machine be genuinely intelligent? Might we ourselves be biological machines, whose thought consists essentially in nothing more than the interaction of neurons according to strictly determined rules? The discussion of these fascinating issues is accessible to non-specialists and stimulating for all readers. Also available in paperback is the companion volume: Connectionism, Concepts, and Folk Psychology, edited by Andy Clark and Peter Millican. While Volume 1 concentrates on Turing's main innovations in artificial intelligence, Volume 2 looks more broadly at his intellectual legacy in philosophy and cognitive science.
Publisher: Oxford University Press
ISBN: 0191001961
Category : Philosophy
Languages : en
Pages : 309
Book Description
This is the first of two volumes of essays in commemoration of Alan Turing, whose pioneering work in the theory of artificial intelligence and computer science continues to be widely discussed today. A group of prominent academics from a wide range of disciplines focus on three questions famously raised by Turing: What, if any, are the limits on machine 'thinking'? Could a machine be genuinely intelligent? Might we ourselves be biological machines, whose thought consists essentially in nothing more than the interaction of neurons according to strictly determined rules? The discussion of these fascinating issues is accessible to non-specialists and stimulating for all readers. Also available in paperback is the companion volume: Connectionism, Concepts, and Folk Psychology, edited by Andy Clark and Peter Millican. While Volume 1 concentrates on Turing's main innovations in artificial intelligence, Volume 2 looks more broadly at his intellectual legacy in philosophy and cognitive science.