Author: Szargut Jan
Publisher:
ISBN:
Category : Energy consumption
Languages : en
Pages : 638
Book Description
ENSEC '93
Author: Szargut Jan
Publisher:
ISBN:
Category : Energy consumption
Languages : en
Pages : 638
Book Description
Publisher:
ISBN:
Category : Energy consumption
Languages : en
Pages : 638
Book Description
ENSEC '93
Author: Jan Szargut
Publisher:
ISBN:
Category : Energy consumption
Languages : en
Pages : 460
Book Description
Publisher:
ISBN:
Category : Energy consumption
Languages : en
Pages : 460
Book Description
Exergy Analysis of Heating, Refrigerating and Air Conditioning
Author: Ibrahim Dincer
Publisher: Academic Press
ISBN: 0124172113
Category : Science
Languages : en
Pages : 402
Book Description
Improve and optimize efficiency of HVAC and related energy systems from an exergy perspective. From fundamentals to advanced applications, Exergy Analysis of Heating, Air Conditioning, and Refrigeration provides readers with a clear and concise description of exergy analysis and its many uses. Focusing on the application of exergy methods to the primary technologies for heating, refrigerating, and air conditioning, Ibrahim Dincer and Marc A. Rosen demonstrate exactly how exergy can help improve and optimize efficiency, environmental performance, and cost-effectiveness. The book also discusses the analysis tools available, and includes many comprehensive case studies on current and emerging systems and technologies for real-world examples. From introducing exergy and thermodynamic fundamentals to presenting the use of exergy methods for heating, refrigeration, and air conditioning systems, this book equips any researcher or practicing engineer with the tools needed to learn and master the application of exergy analysis to these systems. - Explains the fundamentals of energy/exergy for practitioners/researchers in HVAC&R fields for improving efficiency - Covers environmental assessments and economic evaluations for a well-rounded approach to the subject - Includes comprehensive case studies on both current and emerging systems/technologies - Provides examples from a range of applications – from basic HVAC&R to more diverse processes such as industrial heating/cooling, cogeneration and trigeneration, and thermal storage
Publisher: Academic Press
ISBN: 0124172113
Category : Science
Languages : en
Pages : 402
Book Description
Improve and optimize efficiency of HVAC and related energy systems from an exergy perspective. From fundamentals to advanced applications, Exergy Analysis of Heating, Air Conditioning, and Refrigeration provides readers with a clear and concise description of exergy analysis and its many uses. Focusing on the application of exergy methods to the primary technologies for heating, refrigerating, and air conditioning, Ibrahim Dincer and Marc A. Rosen demonstrate exactly how exergy can help improve and optimize efficiency, environmental performance, and cost-effectiveness. The book also discusses the analysis tools available, and includes many comprehensive case studies on current and emerging systems and technologies for real-world examples. From introducing exergy and thermodynamic fundamentals to presenting the use of exergy methods for heating, refrigeration, and air conditioning systems, this book equips any researcher or practicing engineer with the tools needed to learn and master the application of exergy analysis to these systems. - Explains the fundamentals of energy/exergy for practitioners/researchers in HVAC&R fields for improving efficiency - Covers environmental assessments and economic evaluations for a well-rounded approach to the subject - Includes comprehensive case studies on both current and emerging systems/technologies - Provides examples from a range of applications – from basic HVAC&R to more diverse processes such as industrial heating/cooling, cogeneration and trigeneration, and thermal storage
Complexity and Complex Ecological Systems
Author: Stanislaw Sieniutycz
Publisher: Elsevier
ISBN: 0443192383
Category : Technology & Engineering
Languages : en
Pages : 190
Book Description
Complexity and Complex Ecological Systems is an extension of Elsevier's 2021 book Complexity and Complex Chemo-Electric Systems directed toward the analysis and synthesis of diverse ecological processes running in heterogeneous macrosystems. Contemporary advanced techniques such as averaged analysis, food webs approaches, and classical optimization results along with some numerical algorithms are commonly used in ecosystems. This book treats ecological systems as specific functional integrities. In Complexity and Complex Ecological Systems, one can observe how various types of ecological heterogeneities can contribute to flows of living and inanimate parts of the moving pseudo-continuum. This book is a valuable reference for scientists, engineers, and graduate students of environmental, chemical, and biological engineering, helping them better understand complex macroscopic systems and enhance their technical skills in theoretical and practical research. - Covers the basic aspects of modeling, analysis, synthesis, and optimization of ecological systems - Contains theory of selected ecosystems and explanations of how it can be used in applications - Includes original drawings and drafts that illustrate the properties of diverse ecosystems - Written by an expert in advanced methods of biophysics and macroscopic physics
Publisher: Elsevier
ISBN: 0443192383
Category : Technology & Engineering
Languages : en
Pages : 190
Book Description
Complexity and Complex Ecological Systems is an extension of Elsevier's 2021 book Complexity and Complex Chemo-Electric Systems directed toward the analysis and synthesis of diverse ecological processes running in heterogeneous macrosystems. Contemporary advanced techniques such as averaged analysis, food webs approaches, and classical optimization results along with some numerical algorithms are commonly used in ecosystems. This book treats ecological systems as specific functional integrities. In Complexity and Complex Ecological Systems, one can observe how various types of ecological heterogeneities can contribute to flows of living and inanimate parts of the moving pseudo-continuum. This book is a valuable reference for scientists, engineers, and graduate students of environmental, chemical, and biological engineering, helping them better understand complex macroscopic systems and enhance their technical skills in theoretical and practical research. - Covers the basic aspects of modeling, analysis, synthesis, and optimization of ecological systems - Contains theory of selected ecosystems and explanations of how it can be used in applications - Includes original drawings and drafts that illustrate the properties of diverse ecosystems - Written by an expert in advanced methods of biophysics and macroscopic physics
Construction Ecology
Author: Charles J. Kibert
Publisher: Routledge
ISBN: 113450831X
Category : Technology & Engineering
Languages : en
Pages : 330
Book Description
Industrial ecology provides a sound means of systematising the various ideas which come under the banner of sustainable construction and provides a model for the design, operation and ultimate disposal of buildings.
Publisher: Routledge
ISBN: 113450831X
Category : Technology & Engineering
Languages : en
Pages : 330
Book Description
Industrial ecology provides a sound means of systematising the various ideas which come under the banner of sustainable construction and provides a model for the design, operation and ultimate disposal of buildings.
Energy Optimization in Process Systems
Author: Stanislaw Sieniutycz
Publisher: Elsevier
ISBN: 008091442X
Category : Technology & Engineering
Languages : en
Pages : 771
Book Description
Despite the vast research on energy optimization and process integration, there has to date been no synthesis linking these together. This book fills the gap, presenting optimization and integration in energy and process engineering. The content is based on the current literature and includes novel approaches developed by the authors. Various thermal and chemical systems (heat and mass exchangers, thermal and water networks, energy converters, recovery units, solar collectors, and separators) are considered. Thermodynamics, kinetics and economics are used to formulate and solve problems with constraints on process rates, equipment size, environmental parameters, and costs. Comprehensive coverage of dynamic optimization of energy conversion systems and separation units is provided along with suitable computational algorithms for deterministic and stochastic optimization approaches based on: nonlinear programming, dynamic programming, variational calculus, Hamilton-Jacobi-Bellman theory, Pontryagin's maximum principles, and special methods of process integration. Integration of heat energy and process water within a total site is shown to be a significant factor reducing production costs, in particular costs of utilities for the chemical industry. This integration involves systematic design and optimization of heat exchangers and water networks (HEN and WN). After presenting basic, insight-based Pinch Technology, systematic, optimization-based sequential and simultaneous approaches to design HEN and WN are described. Special consideration is given to the HEN design problem targeting stage, in view of its importance at various levels of system design. Selected, advanced methods for HEN synthesis and retrofit are presented. For WN design a novel approach based on stochastic optimization is described that accounts for both grassroot and revamp design scenarios. - Presents a unique synthesis of energy optimization and process integration that applies scientific information from thermodynamics, kinetics, and systems theory - Discusses engineering applications including power generation, resource upgrading, radiation conversion and chemical transformation, in static and dynamic systems - Clarifies how to identify thermal and chemical constraints and incorporate them into optimization models and solutions
Publisher: Elsevier
ISBN: 008091442X
Category : Technology & Engineering
Languages : en
Pages : 771
Book Description
Despite the vast research on energy optimization and process integration, there has to date been no synthesis linking these together. This book fills the gap, presenting optimization and integration in energy and process engineering. The content is based on the current literature and includes novel approaches developed by the authors. Various thermal and chemical systems (heat and mass exchangers, thermal and water networks, energy converters, recovery units, solar collectors, and separators) are considered. Thermodynamics, kinetics and economics are used to formulate and solve problems with constraints on process rates, equipment size, environmental parameters, and costs. Comprehensive coverage of dynamic optimization of energy conversion systems and separation units is provided along with suitable computational algorithms for deterministic and stochastic optimization approaches based on: nonlinear programming, dynamic programming, variational calculus, Hamilton-Jacobi-Bellman theory, Pontryagin's maximum principles, and special methods of process integration. Integration of heat energy and process water within a total site is shown to be a significant factor reducing production costs, in particular costs of utilities for the chemical industry. This integration involves systematic design and optimization of heat exchangers and water networks (HEN and WN). After presenting basic, insight-based Pinch Technology, systematic, optimization-based sequential and simultaneous approaches to design HEN and WN are described. Special consideration is given to the HEN design problem targeting stage, in view of its importance at various levels of system design. Selected, advanced methods for HEN synthesis and retrofit are presented. For WN design a novel approach based on stochastic optimization is described that accounts for both grassroot and revamp design scenarios. - Presents a unique synthesis of energy optimization and process integration that applies scientific information from thermodynamics, kinetics, and systems theory - Discusses engineering applications including power generation, resource upgrading, radiation conversion and chemical transformation, in static and dynamic systems - Clarifies how to identify thermal and chemical constraints and incorporate them into optimization models and solutions
The Ecosystem Approach
Author: David Waltner-Toews
Publisher: Columbia University Press
ISBN: 0231507208
Category : Science
Languages : en
Pages : 674
Book Description
Is sustainable development a workable solution for today's environmental problems? Is it scientifically defensible? Best known for applying ecological theory to the engineering problems of everyday life, the late scholar James J. Kay was a leader in the study of social and ecological complexity and the thermodynamics of ecosystems. Drawing from his immensely important work, as well as the research of his students and colleagues, The Ecosystem Approach is a guide to the aspects of complex systems theories relevant to social-ecological management. Advancing a methodology that is rooted in good theory and practice, this book features case studies conducted in the Arctic and Africa, in Canada and Kathmandu, and in the Peruvian Amazon, Chesapeake Bay, and Chennai, India. Applying a systems approach to concrete environmental issues, this volume is geared toward scientists, engineers, and sustainable development scholars and practitioners who are attuned to the ideas of the Resilience Alliance-an international group of scientists who take a more holistic view of ecology and environmental problem-solving. Chapters cover the origins and rebirth of the ecosystem approach in ecology; the bridging of science and values; the challenge of governance in complex systems; systemic and participatory approaches to management; and the place for cultural diversity in the quest for global sustainability.
Publisher: Columbia University Press
ISBN: 0231507208
Category : Science
Languages : en
Pages : 674
Book Description
Is sustainable development a workable solution for today's environmental problems? Is it scientifically defensible? Best known for applying ecological theory to the engineering problems of everyday life, the late scholar James J. Kay was a leader in the study of social and ecological complexity and the thermodynamics of ecosystems. Drawing from his immensely important work, as well as the research of his students and colleagues, The Ecosystem Approach is a guide to the aspects of complex systems theories relevant to social-ecological management. Advancing a methodology that is rooted in good theory and practice, this book features case studies conducted in the Arctic and Africa, in Canada and Kathmandu, and in the Peruvian Amazon, Chesapeake Bay, and Chennai, India. Applying a systems approach to concrete environmental issues, this volume is geared toward scientists, engineers, and sustainable development scholars and practitioners who are attuned to the ideas of the Resilience Alliance-an international group of scientists who take a more holistic view of ecology and environmental problem-solving. Chapters cover the origins and rebirth of the ecosystem approach in ecology; the bridging of science and values; the challenge of governance in complex systems; systemic and participatory approaches to management; and the place for cultural diversity in the quest for global sustainability.
Exergy
Author: Ibrahim Dincer
Publisher: Elsevier
ISBN: 0128243937
Category : Science
Languages : en
Pages : 726
Book Description
Exergy: Energy, Environment and Sustainable Development, Third Edition provides a systematic overview of new and developed systems, new practical examples, problems and case studies on several key topics ranging from the basics of thermodynamic concepts to advanced exergy analysis techniques in a wide range of applications. With an ancillary online package and solutions manual, this reference connects exergy with three essential areas in terms of energy, environment and sustainable development. As such, it is a thorough reference for professionals who are solving problems related to design, analysis, modeling and assessment. - Connects exergy with three essential areas in terms of energy, environment and sustainable development - Provides a number of illustrative examples, practical applications and case studies - Written in an easy-to-follow style, starting from the basics to advanced systems
Publisher: Elsevier
ISBN: 0128243937
Category : Science
Languages : en
Pages : 726
Book Description
Exergy: Energy, Environment and Sustainable Development, Third Edition provides a systematic overview of new and developed systems, new practical examples, problems and case studies on several key topics ranging from the basics of thermodynamic concepts to advanced exergy analysis techniques in a wide range of applications. With an ancillary online package and solutions manual, this reference connects exergy with three essential areas in terms of energy, environment and sustainable development. As such, it is a thorough reference for professionals who are solving problems related to design, analysis, modeling and assessment. - Connects exergy with three essential areas in terms of energy, environment and sustainable development - Provides a number of illustrative examples, practical applications and case studies - Written in an easy-to-follow style, starting from the basics to advanced systems
Thermal Energy Storage
Author: Ibrahim Dincer
Publisher: John Wiley & Sons
ISBN: 9780471495734
Category : Science
Languages : en
Pages : 602
Book Description
During the last two decades many research and development activities related to energy have concentrated on efficient energy use and energy savings and conservation. In this regard, Thermal Energy Storage (TES) systems can play an important role, as they provide great potential for facilitating energy savings and reducing environmental impact. Thermal storage has received increasing interest in recent years in terms of its applications, and the enormous potential it offers both for more effective use of thermal equipment and for economic, large-scale energy substitutions. Indeed, TES appears to provide one of the most advantageous solutions for correcting the mismatch that often occurs between the supply and demand of energy. Despite this increase in attention, no book is currently available which comprehensively covers TES. Presenting contributions from prominent researchers and scientists, this book is primarily concerned with TES systems and their applications. It begins with a brief summary of general aspects of thermodynamics, fluid mechanics and heat transfer, and then goes on to discuss energy storage technologies, environmental aspects of TES, energy and exergy analyses, and practical applications. Furthermore, this book provides coverage of the theoretical, experimental and numerical techniques employed in the field of thermal storage. Numerous case studies and illustrative examples are included throughout. Some of the unique features of this book include: * State-of-the art descriptions of many facets of TES systems and applications * In-depth coverage of exergy analysis and thermodynamic optimization of TES systems * Extensive new material on TES technologies, including advances due to innovations in sensible- and latent-energy storage * Key chapters on environmental issues, sustainable development and energy savings * Extensive coverage of practical aspects of the design, evaluation, selection and implementation of TES systems * Wide coverage of TES-system modelling, ranging in level from elementary to advanced * Abundant design examples, case studies and references In short, this book forms a valuable reference resource for practicing engineers and researchers, and a research-oriented text book for advanced undergraduate and graduate students of various engineering disciplines. Instructors will find that its breadth and structure make it an ideal core text for TES and related courses.
Publisher: John Wiley & Sons
ISBN: 9780471495734
Category : Science
Languages : en
Pages : 602
Book Description
During the last two decades many research and development activities related to energy have concentrated on efficient energy use and energy savings and conservation. In this regard, Thermal Energy Storage (TES) systems can play an important role, as they provide great potential for facilitating energy savings and reducing environmental impact. Thermal storage has received increasing interest in recent years in terms of its applications, and the enormous potential it offers both for more effective use of thermal equipment and for economic, large-scale energy substitutions. Indeed, TES appears to provide one of the most advantageous solutions for correcting the mismatch that often occurs between the supply and demand of energy. Despite this increase in attention, no book is currently available which comprehensively covers TES. Presenting contributions from prominent researchers and scientists, this book is primarily concerned with TES systems and their applications. It begins with a brief summary of general aspects of thermodynamics, fluid mechanics and heat transfer, and then goes on to discuss energy storage technologies, environmental aspects of TES, energy and exergy analyses, and practical applications. Furthermore, this book provides coverage of the theoretical, experimental and numerical techniques employed in the field of thermal storage. Numerous case studies and illustrative examples are included throughout. Some of the unique features of this book include: * State-of-the art descriptions of many facets of TES systems and applications * In-depth coverage of exergy analysis and thermodynamic optimization of TES systems * Extensive new material on TES technologies, including advances due to innovations in sensible- and latent-energy storage * Key chapters on environmental issues, sustainable development and energy savings * Extensive coverage of practical aspects of the design, evaluation, selection and implementation of TES systems * Wide coverage of TES-system modelling, ranging in level from elementary to advanced * Abundant design examples, case studies and references In short, this book forms a valuable reference resource for practicing engineers and researchers, and a research-oriented text book for advanced undergraduate and graduate students of various engineering disciplines. Instructors will find that its breadth and structure make it an ideal core text for TES and related courses.
Energy Optimization in Process Systems and Fuel Cells
Author: Stanislaw Sieniutycz
Publisher: Elsevier
ISBN: 0081025580
Category : Technology & Engineering
Languages : en
Pages : 814
Book Description
Energy Optimization in Process Systems and Fuel Cells, Third Edition covers the optimization and integration of energy systems, with a particular focus on fuel cell technology. With rising energy prices, imminent energy shortages, and the increasing environmental impacts of energy production, energy optimization and systems integration is critically important. The book applies thermodynamics, kinetics and economics to study the effect of equipment size, environmental parameters, and economic factors on optimal power production and heat integration. Author Stanislaw Sieniutycz, highly recognized for his expertise and teaching, shows how costs can be substantially reduced, particularly in utilities common in the chemical industry. This third edition contains substantial revisions and modifications, with new material on catalytic reactors, sorption systems, sorbent or catalyst regenerators, dryers, and more. - Presents a unified approach to the optimization and integration of energy systems - Includes a large number of examples treating dynamical systems - Provides exposition showing the power of thermodynamics - Contains a large number of maximum power analyses and their extensions
Publisher: Elsevier
ISBN: 0081025580
Category : Technology & Engineering
Languages : en
Pages : 814
Book Description
Energy Optimization in Process Systems and Fuel Cells, Third Edition covers the optimization and integration of energy systems, with a particular focus on fuel cell technology. With rising energy prices, imminent energy shortages, and the increasing environmental impacts of energy production, energy optimization and systems integration is critically important. The book applies thermodynamics, kinetics and economics to study the effect of equipment size, environmental parameters, and economic factors on optimal power production and heat integration. Author Stanislaw Sieniutycz, highly recognized for his expertise and teaching, shows how costs can be substantially reduced, particularly in utilities common in the chemical industry. This third edition contains substantial revisions and modifications, with new material on catalytic reactors, sorption systems, sorbent or catalyst regenerators, dryers, and more. - Presents a unified approach to the optimization and integration of energy systems - Includes a large number of examples treating dynamical systems - Provides exposition showing the power of thermodynamics - Contains a large number of maximum power analyses and their extensions