Author: B.B. Muvdi
Publisher: Springer Science & Business Media
ISBN: 1461230225
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
4. 2 Solid Circular Shafts-Angle of Twist and Shearing Stresses 159 4. 3 Hollow Circular Shafts-Angle of Twist and Shearing Stresses 166 4. 4 Principal Stresses and Strains Associated with Torsion 173 4. 5 Analytical and Experimental Solutions for Torsion of Members of Noncircular Cross Sections 179 4. 6 Shearing Stress-Strain Properties 188 *4. 7 Computer Applications 195 5 Stresses in Beams 198 5. 1 Introduction 198 5. 2 Review of Properties of Areas 198 5. 3 Flexural Stresses due to Symmetric Bending of Beams 211 5. 4 Shear Stresses in Symmetrically Loaded Beams 230 *5. 5 Flexural Stresses due to Unsymmetric Bending of Beams 248 *5. 6 Computer Applications 258 Deflections of Beams 265 I 6. 1 Introduction 265 6. 2 Moment-Curvature Relationship 266 6. 3 Beam Deflections-Two Successive Integrations 268 6. 4 Derivatives of the Elastic Curve Equation and Their Physical Significance 280 6. 5 Beam Deflections-The Method of Superposition 290 6. 6 Construction of Moment Diagrams by Cantilever Parts 299 6. 7 Beam Deflections-The Area-Moment Method 302 *6. 8 Beam Deflections-Singularity Functions 319 *6. 9 Beam Deflections-Castigliano's Second Theorem 324 *6. 10 Computer Applications 332 7 Combined Stresses and Theories of Failure 336 7. 1 Introduction 336 7. 2 Axial and Torsional Stresses 336 Axial and Flexural Stresses 342 7. 3 Torsional and Flexural Stresses 352 7. 4 7. 5 Torsional, Flexural, and Axial Stresses 358 *7. 6 Theories of Failure 365 Computer Applications 378 *7.
Engineering Mechanics of Materials
Author: B.B. Muvdi
Publisher: Springer Science & Business Media
ISBN: 1461230225
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
4. 2 Solid Circular Shafts-Angle of Twist and Shearing Stresses 159 4. 3 Hollow Circular Shafts-Angle of Twist and Shearing Stresses 166 4. 4 Principal Stresses and Strains Associated with Torsion 173 4. 5 Analytical and Experimental Solutions for Torsion of Members of Noncircular Cross Sections 179 4. 6 Shearing Stress-Strain Properties 188 *4. 7 Computer Applications 195 5 Stresses in Beams 198 5. 1 Introduction 198 5. 2 Review of Properties of Areas 198 5. 3 Flexural Stresses due to Symmetric Bending of Beams 211 5. 4 Shear Stresses in Symmetrically Loaded Beams 230 *5. 5 Flexural Stresses due to Unsymmetric Bending of Beams 248 *5. 6 Computer Applications 258 Deflections of Beams 265 I 6. 1 Introduction 265 6. 2 Moment-Curvature Relationship 266 6. 3 Beam Deflections-Two Successive Integrations 268 6. 4 Derivatives of the Elastic Curve Equation and Their Physical Significance 280 6. 5 Beam Deflections-The Method of Superposition 290 6. 6 Construction of Moment Diagrams by Cantilever Parts 299 6. 7 Beam Deflections-The Area-Moment Method 302 *6. 8 Beam Deflections-Singularity Functions 319 *6. 9 Beam Deflections-Castigliano's Second Theorem 324 *6. 10 Computer Applications 332 7 Combined Stresses and Theories of Failure 336 7. 1 Introduction 336 7. 2 Axial and Torsional Stresses 336 Axial and Flexural Stresses 342 7. 3 Torsional and Flexural Stresses 352 7. 4 7. 5 Torsional, Flexural, and Axial Stresses 358 *7. 6 Theories of Failure 365 Computer Applications 378 *7.
Publisher: Springer Science & Business Media
ISBN: 1461230225
Category : Technology & Engineering
Languages : en
Pages : 704
Book Description
4. 2 Solid Circular Shafts-Angle of Twist and Shearing Stresses 159 4. 3 Hollow Circular Shafts-Angle of Twist and Shearing Stresses 166 4. 4 Principal Stresses and Strains Associated with Torsion 173 4. 5 Analytical and Experimental Solutions for Torsion of Members of Noncircular Cross Sections 179 4. 6 Shearing Stress-Strain Properties 188 *4. 7 Computer Applications 195 5 Stresses in Beams 198 5. 1 Introduction 198 5. 2 Review of Properties of Areas 198 5. 3 Flexural Stresses due to Symmetric Bending of Beams 211 5. 4 Shear Stresses in Symmetrically Loaded Beams 230 *5. 5 Flexural Stresses due to Unsymmetric Bending of Beams 248 *5. 6 Computer Applications 258 Deflections of Beams 265 I 6. 1 Introduction 265 6. 2 Moment-Curvature Relationship 266 6. 3 Beam Deflections-Two Successive Integrations 268 6. 4 Derivatives of the Elastic Curve Equation and Their Physical Significance 280 6. 5 Beam Deflections-The Method of Superposition 290 6. 6 Construction of Moment Diagrams by Cantilever Parts 299 6. 7 Beam Deflections-The Area-Moment Method 302 *6. 8 Beam Deflections-Singularity Functions 319 *6. 9 Beam Deflections-Castigliano's Second Theorem 324 *6. 10 Computer Applications 332 7 Combined Stresses and Theories of Failure 336 7. 1 Introduction 336 7. 2 Axial and Torsional Stresses 336 Axial and Flexural Stresses 342 7. 3 Torsional and Flexural Stresses 352 7. 4 7. 5 Torsional, Flexural, and Axial Stresses 358 *7. 6 Theories of Failure 365 Computer Applications 378 *7.
Mechanics of Materials
Author: Parviz Ghavami
Publisher: Springer
ISBN: 3319075721
Category : Science
Languages : en
Pages : 258
Book Description
This book, framed in the processes of engineering analysis and design, presents concepts in mechanics of materials for students in two-year or four-year programs in engineering technology, architecture, and building construction; as well as for students in vocational schools and technical institutes. Using the principles and laws of mechanics, physics, and the fundamentals of engineering, Mechanics of Materials: An Introduction for Engineering Technology will help aspiring and practicing engineers and engineering technicians from across disciplines—mechanical, civil, chemical, and electrical—apply concepts of engineering mechanics for analysis and design of materials, structures, and machine components. The book is ideal for those seeking a rigorous, algebra/trigonometry-based text on the mechanics of materials.
Publisher: Springer
ISBN: 3319075721
Category : Science
Languages : en
Pages : 258
Book Description
This book, framed in the processes of engineering analysis and design, presents concepts in mechanics of materials for students in two-year or four-year programs in engineering technology, architecture, and building construction; as well as for students in vocational schools and technical institutes. Using the principles and laws of mechanics, physics, and the fundamentals of engineering, Mechanics of Materials: An Introduction for Engineering Technology will help aspiring and practicing engineers and engineering technicians from across disciplines—mechanical, civil, chemical, and electrical—apply concepts of engineering mechanics for analysis and design of materials, structures, and machine components. The book is ideal for those seeking a rigorous, algebra/trigonometry-based text on the mechanics of materials.
Engineering Mechanics 2
Author: Dietmar Gross
Publisher: Springer
ISBN: 3662562723
Category : Science
Languages : en
Pages : 318
Book Description
Now in its second English edition, Mechanics of Materials is the second volume of a three-volume textbook series on Engineering Mechanics. It was written with the intention of presenting to engineering students the basic concepts and principles of mechanics in as simple a form as the subject allows. A second objective of this book is to guide the students in their efforts to solve problems in mechanics in a systematic manner. The simple approach to the theory of mechanics allows for the different educational backgrounds of the students. Another aim of this book is to provide engineering students as well as practising engineers with a basis to help them bridge the gaps between undergraduate studies, advanced courses on mechanics and practical engineering problems. The book contains numerous examples and their solutions. Emphasis is placed upon student participation in solving the problems. The new edition is fully revised and supplemented by additional examples. The contents of the book correspond to the topics normally covered in courses on basic engineering mechanics at universities and colleges. Volume 1 deals with Statics and Volume 3 treats Particle Dynamics and Rigid Body Dynamics. Separate books with exercises and well elaborated solutions are available.
Publisher: Springer
ISBN: 3662562723
Category : Science
Languages : en
Pages : 318
Book Description
Now in its second English edition, Mechanics of Materials is the second volume of a three-volume textbook series on Engineering Mechanics. It was written with the intention of presenting to engineering students the basic concepts and principles of mechanics in as simple a form as the subject allows. A second objective of this book is to guide the students in their efforts to solve problems in mechanics in a systematic manner. The simple approach to the theory of mechanics allows for the different educational backgrounds of the students. Another aim of this book is to provide engineering students as well as practising engineers with a basis to help them bridge the gaps between undergraduate studies, advanced courses on mechanics and practical engineering problems. The book contains numerous examples and their solutions. Emphasis is placed upon student participation in solving the problems. The new edition is fully revised and supplemented by additional examples. The contents of the book correspond to the topics normally covered in courses on basic engineering mechanics at universities and colleges. Volume 1 deals with Statics and Volume 3 treats Particle Dynamics and Rigid Body Dynamics. Separate books with exercises and well elaborated solutions are available.
Mechanics of Materials For Dummies
Author: James H. Allen, III
Publisher: John Wiley & Sons
ISBN: 1118089014
Category : Technology & Engineering
Languages : en
Pages : 397
Book Description
Your ticket to excelling in mechanics of materials With roots in physics and mathematics, engineering mechanics is the basis of all the mechanical sciences: civil engineering, materials science and engineering, mechanical engineering, and aeronautical and aerospace engineering. Tracking a typical undergraduate course, Mechanics of Materials For Dummies gives you a thorough introduction to this foundational subject. You'll get clear, plain-English explanations of all the topics covered, including principles of equilibrium, geometric compatibility, and material behavior; stress and its relation to force and movement; strain and its relation to displacement; elasticity and plasticity; fatigue and fracture; failure modes; application to simple engineering structures, and more. Tracks to a course that is a prerequisite for most engineering majors Covers key mechanics concepts, summaries of useful equations, and helpful tips From geometric principles to solving complex equations, Mechanics of Materials For Dummies is an invaluable resource for engineering students!
Publisher: John Wiley & Sons
ISBN: 1118089014
Category : Technology & Engineering
Languages : en
Pages : 397
Book Description
Your ticket to excelling in mechanics of materials With roots in physics and mathematics, engineering mechanics is the basis of all the mechanical sciences: civil engineering, materials science and engineering, mechanical engineering, and aeronautical and aerospace engineering. Tracking a typical undergraduate course, Mechanics of Materials For Dummies gives you a thorough introduction to this foundational subject. You'll get clear, plain-English explanations of all the topics covered, including principles of equilibrium, geometric compatibility, and material behavior; stress and its relation to force and movement; strain and its relation to displacement; elasticity and plasticity; fatigue and fracture; failure modes; application to simple engineering structures, and more. Tracks to a course that is a prerequisite for most engineering majors Covers key mechanics concepts, summaries of useful equations, and helpful tips From geometric principles to solving complex equations, Mechanics of Materials For Dummies is an invaluable resource for engineering students!
Mechanics and Strength of Materials
Author: Vitor Dias da Silva
Publisher: Springer Science & Business Media
ISBN: 354030813X
Category : Science
Languages : en
Pages : 532
Book Description
Gives a clear and thorough presentation of the fundamental principles of mechanics and strength of materials. Provides both the theory and applications of mechanics of materials on an intermediate theoretical level. Useful as a reference tool by postgraduates and researchers in the fields of solid mechanics as well as practicing engineers.
Publisher: Springer Science & Business Media
ISBN: 354030813X
Category : Science
Languages : en
Pages : 532
Book Description
Gives a clear and thorough presentation of the fundamental principles of mechanics and strength of materials. Provides both the theory and applications of mechanics of materials on an intermediate theoretical level. Useful as a reference tool by postgraduates and researchers in the fields of solid mechanics as well as practicing engineers.
History of Strength of Materials
Author: Stephen Timoshenko
Publisher: Courier Corporation
ISBN: 9780486611877
Category : Technology & Engineering
Languages : en
Pages : 482
Book Description
Strength of materials is that branch of engineering concerned with the deformation and disruption of solids when forces other than changes in position or equilibrium are acting upon them. The development of our understanding of the strength of materials has enabled engineers to establish the forces which can safely be imposed on structure or components, or to choose materials appropriate to the necessary dimensions of structures and components which have to withstand given loads without suffering effects deleterious to their proper functioning. This excellent historical survey of the strength of materials with many references to the theories of elasticity and structures is based on an extensive series of lectures delivered by the author at Stanford University, Palo Alto, California. Timoshenko explores the early roots of the discipline from the great monuments and pyramids of ancient Egypt through the temples, roads, and fortifications of ancient Greece and Rome. The author fixes the formal beginning of the modern science of the strength of materials with the publications of Galileo's book, "Two Sciences," and traces the rise and development as well as industrial and commercial applications of the fledgling science from the seventeenth century through the twentieth century. Timoshenko fleshes out the bare bones of mathematical theory with lucid demonstrations of important equations and brief biographies of highly influential mathematicians, including: Euler, Lagrange, Navier, Thomas Young, Saint-Venant, Franz Neumann, Maxwell, Kelvin, Rayleigh, Klein, Prandtl, and many others. These theories, equations, and biographies are further enhanced by clear discussions of the development of engineering and engineering education in Italy, France, Germany, England, and elsewhere. 245 figures.
Publisher: Courier Corporation
ISBN: 9780486611877
Category : Technology & Engineering
Languages : en
Pages : 482
Book Description
Strength of materials is that branch of engineering concerned with the deformation and disruption of solids when forces other than changes in position or equilibrium are acting upon them. The development of our understanding of the strength of materials has enabled engineers to establish the forces which can safely be imposed on structure or components, or to choose materials appropriate to the necessary dimensions of structures and components which have to withstand given loads without suffering effects deleterious to their proper functioning. This excellent historical survey of the strength of materials with many references to the theories of elasticity and structures is based on an extensive series of lectures delivered by the author at Stanford University, Palo Alto, California. Timoshenko explores the early roots of the discipline from the great monuments and pyramids of ancient Egypt through the temples, roads, and fortifications of ancient Greece and Rome. The author fixes the formal beginning of the modern science of the strength of materials with the publications of Galileo's book, "Two Sciences," and traces the rise and development as well as industrial and commercial applications of the fledgling science from the seventeenth century through the twentieth century. Timoshenko fleshes out the bare bones of mathematical theory with lucid demonstrations of important equations and brief biographies of highly influential mathematicians, including: Euler, Lagrange, Navier, Thomas Young, Saint-Venant, Franz Neumann, Maxwell, Kelvin, Rayleigh, Klein, Prandtl, and many others. These theories, equations, and biographies are further enhanced by clear discussions of the development of engineering and engineering education in Italy, France, Germany, England, and elsewhere. 245 figures.
Mechanics of Materials
Author: Ferdinand Pierre Beer
Publisher:
ISBN: 9780071210607
Category : Strength of materials
Languages : en
Pages : 788
Book Description
For the past forty years Beer and Johnston have been the uncontested leaders in the teaching of undergraduate engineering mechanics. Their careful presentation of content, unmatched levels of accuracy, and attention to detail have made their texts the standard for excellence. The revision of their classic Mechanics of Materials text features a new and updated design and art program; almost every homework problem is new or revised; and extensive content revisions and text reorganizations have been made. The multimedia supplement package includes an extensive strength of materials Interactive Tutorial (created by George Staab and Brooks Breeden of The Ohio State University) to provide students with additional help on key concepts, and a custom book website offers online resources for both instructors and students.
Publisher:
ISBN: 9780071210607
Category : Strength of materials
Languages : en
Pages : 788
Book Description
For the past forty years Beer and Johnston have been the uncontested leaders in the teaching of undergraduate engineering mechanics. Their careful presentation of content, unmatched levels of accuracy, and attention to detail have made their texts the standard for excellence. The revision of their classic Mechanics of Materials text features a new and updated design and art program; almost every homework problem is new or revised; and extensive content revisions and text reorganizations have been made. The multimedia supplement package includes an extensive strength of materials Interactive Tutorial (created by George Staab and Brooks Breeden of The Ohio State University) to provide students with additional help on key concepts, and a custom book website offers online resources for both instructors and students.
Strength of Materials
Author: J. P. Den Hartog
Publisher: Courier Corporation
ISBN: 0486156907
Category : Science
Languages : en
Pages : 354
Book Description
In addition to coverage of customary elementary subjects (tension, torsion, bending, etc.), this introductory text features advanced material on engineering methods and applications, plus 350 problems and answers. 1949 edition.
Publisher: Courier Corporation
ISBN: 0486156907
Category : Science
Languages : en
Pages : 354
Book Description
In addition to coverage of customary elementary subjects (tension, torsion, bending, etc.), this introductory text features advanced material on engineering methods and applications, plus 350 problems and answers. 1949 edition.
Mechanics of Materials – Formulas and Problems
Author: Dietmar Gross
Publisher: Springer
ISBN: 3662538806
Category : Technology & Engineering
Languages : en
Pages : 219
Book Description
This book contains the most important formulas and more than 140 completely solved problems from Mechanics of Materials and Hydrostatics. It provides engineering students material to improve their skills and helps to gain experience in solving engineering problems. Particular emphasis is placed on finding the solution path and formulating the basic equations. Topics include: - Stress - Strain - Hooke’s Law - Tension and Compression in Bars - Bending of Beams - Torsion - Energy Methods - Buckling of Bars - Hydrostatics
Publisher: Springer
ISBN: 3662538806
Category : Technology & Engineering
Languages : en
Pages : 219
Book Description
This book contains the most important formulas and more than 140 completely solved problems from Mechanics of Materials and Hydrostatics. It provides engineering students material to improve their skills and helps to gain experience in solving engineering problems. Particular emphasis is placed on finding the solution path and formulating the basic equations. Topics include: - Stress - Strain - Hooke’s Law - Tension and Compression in Bars - Bending of Beams - Torsion - Energy Methods - Buckling of Bars - Hydrostatics
Mechanics of Materials
Author: Madhukar Vable
Publisher: Oxford University Press, USA
ISBN: 9780195133370
Category : Technology & Engineering
Languages : en
Pages : 774
Book Description
Applications of the principles of mechanics of materials have increased considerably over the last 25 years. Today's routine industrial practices and techniques were only esoteric research topics just a few years ago. That research is now relevant to such diverse but commonplace applications as electronic packaging, medical implantation, geology (seismic prediction), and engineered wood products. It is in this rapidly changing world that Madhukar Vable's Mechanics of Materials takes its place as a standard text for civil, mechanical, and aerospace engineering majors, as well as for any other engineering discipline that includes mechanics of materials as a basic course. Vable's distinct pedagogical approach translates into exceptional features that enhance student participation in learning. It assumes a complementary connection between intuition, experimental observation, and mathematical generalization, suggesting that intuitive development and understanding need not be at odds with mathematical logic, rigor, and generalization. This approach also emphasizes engineering practice without distracting from the main point of the text. With strong practical examples and real-life engineering problems praised by reviewers, Mechanics of Materials promises to provide the skills and principles that students need to organize, integrate, and make sense of the flood of information emerging in the world of modern engineering. Pedagogical Features · Overview: Each chapter begins with a concise Overview that describes the motivation and major learning objective behind the chapter. · Points and Formulas to Remember: Each chapter ends with a convenient one-page synopsis of essential topics. · Plans and Comments: Every example starts with a Plan for solving the problem and ends with Comments that connect the example with previous and future concepts in the text, putting examples firmly into context within the field of mechanics. · Quick Tests: Quick Tests help students effectively diagnose their own understanding of text material. · Consolidate Your Knowledge: These boxes follow major topics and prompt students to write a synopsis of or derive a formula for material just covered, encouraging development of personal reasoning skills. · General Information: These intriguing sections connect historical development and advanced topics to material in each chapter. · "Stretch Yourself": Problems labeled "Stretch Yourself" contain important reference material that will be useful to students as future engineers. · Closure: Every chapter closes with helpful links to topics in subsequent chapters. · Formula Sheet: These useful sheets are found inside the back cover of the book for easy reference. They list equations of essential topics but include no explanations of variables and equations, making them perfect for use during exams.
Publisher: Oxford University Press, USA
ISBN: 9780195133370
Category : Technology & Engineering
Languages : en
Pages : 774
Book Description
Applications of the principles of mechanics of materials have increased considerably over the last 25 years. Today's routine industrial practices and techniques were only esoteric research topics just a few years ago. That research is now relevant to such diverse but commonplace applications as electronic packaging, medical implantation, geology (seismic prediction), and engineered wood products. It is in this rapidly changing world that Madhukar Vable's Mechanics of Materials takes its place as a standard text for civil, mechanical, and aerospace engineering majors, as well as for any other engineering discipline that includes mechanics of materials as a basic course. Vable's distinct pedagogical approach translates into exceptional features that enhance student participation in learning. It assumes a complementary connection between intuition, experimental observation, and mathematical generalization, suggesting that intuitive development and understanding need not be at odds with mathematical logic, rigor, and generalization. This approach also emphasizes engineering practice without distracting from the main point of the text. With strong practical examples and real-life engineering problems praised by reviewers, Mechanics of Materials promises to provide the skills and principles that students need to organize, integrate, and make sense of the flood of information emerging in the world of modern engineering. Pedagogical Features · Overview: Each chapter begins with a concise Overview that describes the motivation and major learning objective behind the chapter. · Points and Formulas to Remember: Each chapter ends with a convenient one-page synopsis of essential topics. · Plans and Comments: Every example starts with a Plan for solving the problem and ends with Comments that connect the example with previous and future concepts in the text, putting examples firmly into context within the field of mechanics. · Quick Tests: Quick Tests help students effectively diagnose their own understanding of text material. · Consolidate Your Knowledge: These boxes follow major topics and prompt students to write a synopsis of or derive a formula for material just covered, encouraging development of personal reasoning skills. · General Information: These intriguing sections connect historical development and advanced topics to material in each chapter. · "Stretch Yourself": Problems labeled "Stretch Yourself" contain important reference material that will be useful to students as future engineers. · Closure: Every chapter closes with helpful links to topics in subsequent chapters. · Formula Sheet: These useful sheets are found inside the back cover of the book for easy reference. They list equations of essential topics but include no explanations of variables and equations, making them perfect for use during exams.