Engineering Magnetohydrodynamics

Engineering Magnetohydrodynamics PDF Author: George W. Sutton
Publisher: Courier Dover Publications
ISBN: 0486450325
Category : Technology & Engineering
Languages : en
Pages : 571

Get Book Here

Book Description
Suitable for advanced undergraduates and graduate students in engineering, this text introduces the concepts of plasma physics and magnetohydrodynamics from a physical viewpoint. The first section of the three-part treatment deals mainly with the properties of ionized gases in magnetic and electric fields, essentially following the microscopic viewpoint. An introduction surveys the concepts of ionized gases and plasmas, together with a variety of magnetohydrodynamic regimes. A review of electromagnetic field theory follows, including motion of an individual charged particle and derivations of drift motions and adiabatic invariants. Additional topics include kinetic theory, derivation of electrical conductivity, development of statistical mechanics, radiation from plasma, and plasma wave motion. Part II addresses the macroscopic motion of electrically conducting compressible fluids: magnetohydrodynamic approximations; description of macroscopic fluid motions; magnetohydrodynamic channel flow; methods of estimating channel-flow behavior; and treatment of magnetohydrodynamic boundary layers. Part III draws upon the material developed in previous sections to explore applications of magnetohydrodynamics. The text concludes with a series of problems that reinforce the teachings of all three parts.

Engineering Magnetohydrodynamics

Engineering Magnetohydrodynamics PDF Author: George W. Sutton
Publisher: Courier Dover Publications
ISBN: 0486450325
Category : Technology & Engineering
Languages : en
Pages : 571

Get Book Here

Book Description
Suitable for advanced undergraduates and graduate students in engineering, this text introduces the concepts of plasma physics and magnetohydrodynamics from a physical viewpoint. The first section of the three-part treatment deals mainly with the properties of ionized gases in magnetic and electric fields, essentially following the microscopic viewpoint. An introduction surveys the concepts of ionized gases and plasmas, together with a variety of magnetohydrodynamic regimes. A review of electromagnetic field theory follows, including motion of an individual charged particle and derivations of drift motions and adiabatic invariants. Additional topics include kinetic theory, derivation of electrical conductivity, development of statistical mechanics, radiation from plasma, and plasma wave motion. Part II addresses the macroscopic motion of electrically conducting compressible fluids: magnetohydrodynamic approximations; description of macroscopic fluid motions; magnetohydrodynamic channel flow; methods of estimating channel-flow behavior; and treatment of magnetohydrodynamic boundary layers. Part III draws upon the material developed in previous sections to explore applications of magnetohydrodynamics. The text concludes with a series of problems that reinforce the teachings of all three parts.

An Introduction to Magnetohydrodynamics

An Introduction to Magnetohydrodynamics PDF Author: P. A. Davidson
Publisher: Cambridge University Press
ISBN: 9780521794879
Category : Mathematics
Languages : en
Pages : 456

Get Book Here

Book Description
This book is an introductory text on magnetohydrodynamics (MHD) - the study of the interaction of magnetic fields and conducting fluids.

Magnetohydrodynamics and the National Coal Science, Technology, and Engineering Development Acts

Magnetohydrodynamics and the National Coal Science, Technology, and Engineering Development Acts PDF Author: United States. Congress. Senate. Committee on Energy and Natural Resources. Subcommittee on Energy Research and Development
Publisher:
ISBN:
Category : Coal
Languages : en
Pages : 412

Get Book Here

Book Description


Engineering Aspects of Magnetohydrodynamics

Engineering Aspects of Magnetohydrodynamics PDF Author: Clifford Mannal
Publisher:
ISBN:
Category : Magnetohydrodynamic generators
Languages : en
Pages : 602

Get Book Here

Book Description


Engineering Magnetohydrodynamics

Engineering Magnetohydrodynamics PDF Author: George W. Sutton
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Engineering Aspects of Magnetohydrodynamics

Engineering Aspects of Magnetohydrodynamics PDF Author:
Publisher:
ISBN:
Category : Magnetohydrodynamic generators
Languages : en
Pages : 532

Get Book Here

Book Description


Engineering Aspects of Magneto-hydrodynamics

Engineering Aspects of Magneto-hydrodynamics PDF Author:
Publisher:
ISBN:
Category : Magnetohydrodynamics
Languages : en
Pages : 446

Get Book Here

Book Description


Open-cycle Magnetohydrodynamic Electrical Power Generation

Open-cycle Magnetohydrodynamic Electrical Power Generation PDF Author:
Publisher:
ISBN:
Category : Electric power production
Languages : en
Pages : 744

Get Book Here

Book Description


Magnetohydrodynamic Electrical Power Generation

Magnetohydrodynamic Electrical Power Generation PDF Author: Hugo K. Messerle
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 224

Get Book Here

Book Description
Magnetohydrodynamic Electrical Power Generation Hugo K. Messerle University of Sydney, Australia The global demand for energy continues to grow. Magnetohydrodynamic (MHD) conversion processes offer a highly efficient, clean and direct conversion of energy for power generation and propulsion. By converting the kinetic energy of a flowing fluid into electricity directly, MHD systems help address the problems of environmental pollution. At the same time MHD is particularly suitable for primary energy sources or fuels providing energy at temperatures extending far beyond those manageable by any conventional thermal conversion plant. It therefore offers a potentially more effective utilisation of fossil and nuclear fuels. The author covers all aspects of MHD power generation, including the design and operation of MHD conversion systems in practice. Features include: A comprehensive introduction to the principles behind the interaction of magnetic field and electric currents with electrically conducting fluids in the conversion of energy. Coverage of all aspects of generator configurations, as well as the disk generator, multi-phase converters, and propulsion systems. Study of the design for AC power generation, covering the control and power conditioning of the generator and the integration of such designs into existing power systems. Study of the use of MHD plant as part of a topping cycle combined with a steam and/or gas turbine or ternary cycle potentially leading to combined cycle efficiencies of up to 60%. Relevant worked examples in each chapter to assist the reader with self-study and the understanding of the topic. This text will appeal to advanced students in power engineering, physics and mechanics. Practising engineers and scientists is the field of power technology will find if an excellent practical reference and a basis for developing ideas on large scale MHD processes. Magnetohydrodynamic Electrical Power Generation forms a part of the Energy Engineering Learning Package. This innovative distance learning package has been established to train power engineers to meet today’s and tomorrow’s challenges in this exciting field. Organised by a team of distinguished, international academics, the modular course is aimed at advanced undergraduate and postgraduate students, as well as power engineers working in industry. World Solar Summit Process

Mathematical Magnetohydrodynamics

Mathematical Magnetohydrodynamics PDF Author: Nikolas Xiros
Publisher: Morgan & Claypool Publishers
ISBN: 1681732459
Category : Technology & Engineering
Languages : en
Pages : 167

Get Book Here

Book Description
Fundamentals of mathematical magnetohydrodynamics (MHD) start with definitions of major variables and parameters in MHD fluids (also known as MHD media) and specifically plasmas encountered in nature as well as in engineering sytems, e.g., metallurgy or thermonuclear fusion power. Then collisions of fluids in such fluids are examined as well as motion of individual particles. Then the basic principles of MHD fluids are introduced along with transport phenomena, medium boundaries, and surface interactions. Then, waves and resonances of all sorts in MHD media are presented. The account concludes with the description of main MHD fluid types including plasma in fusion power generation.