Concise Metals Engineering Data Book

Concise Metals Engineering Data Book PDF Author: Joseph R. Davis
Publisher: ASM International
ISBN: 161503983X
Category : Technology & Engineering
Languages : en
Pages : 257

Get Book Here

Book Description

Concise Metals Engineering Data Book

Concise Metals Engineering Data Book PDF Author: Joseph R. Davis
Publisher: ASM International
ISBN: 161503983X
Category : Technology & Engineering
Languages : en
Pages : 257

Get Book Here

Book Description


Data-Driven Science and Engineering

Data-Driven Science and Engineering PDF Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615

Get Book Here

Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

ASME Engineer's Data Book

ASME Engineer's Data Book PDF Author: Clifford Matthews
Publisher: American Society of Mechanical Engineers
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 388

Get Book Here

Book Description
This greatly expanded second edition of this popular and handy reference book includes over 100 new pages, including extensive coverage of Section VIII of the ASME Pressure Vessel Code. Divided into 22 sections, this pocket-sized volume is an exhaustive "quick reference" of up-to-date engineering data and rules. It includes: essential mathematics; units; engineering design processes and principles; basic mechanical design; motion; mechanics of materials; material failure; thermodynamics; fluid mechanics; fluid equipment; vessel codes and standards; materials; machine elements; design and production tools; project engineering; computer-aided engineering; welding; non-destructive examination; corrosion; surface protection; metallurgical terms; and engineering associations and organizations.

Data Engineering with Google Cloud Platform

Data Engineering with Google Cloud Platform PDF Author: Adi Wijaya
Publisher: Packt Publishing Ltd
ISBN: 1800565062
Category : Computers
Languages : en
Pages : 440

Get Book Here

Book Description
Build and deploy your own data pipelines on GCP, make key architectural decisions, and gain the confidence to boost your career as a data engineer Key Features Understand data engineering concepts, the role of a data engineer, and the benefits of using GCP for building your solution Learn how to use the various GCP products to ingest, consume, and transform data and orchestrate pipelines Discover tips to prepare for and pass the Professional Data Engineer exam Book DescriptionWith this book, you'll understand how the highly scalable Google Cloud Platform (GCP) enables data engineers to create end-to-end data pipelines right from storing and processing data and workflow orchestration to presenting data through visualization dashboards. Starting with a quick overview of the fundamental concepts of data engineering, you'll learn the various responsibilities of a data engineer and how GCP plays a vital role in fulfilling those responsibilities. As you progress through the chapters, you'll be able to leverage GCP products to build a sample data warehouse using Cloud Storage and BigQuery and a data lake using Dataproc. The book gradually takes you through operations such as data ingestion, data cleansing, transformation, and integrating data with other sources. You'll learn how to design IAM for data governance, deploy ML pipelines with the Vertex AI, leverage pre-built GCP models as a service, and visualize data with Google Data Studio to build compelling reports. Finally, you'll find tips on how to boost your career as a data engineer, take the Professional Data Engineer certification exam, and get ready to become an expert in data engineering with GCP. By the end of this data engineering book, you'll have developed the skills to perform core data engineering tasks and build efficient ETL data pipelines with GCP.What you will learn Load data into BigQuery and materialize its output for downstream consumption Build data pipeline orchestration using Cloud Composer Develop Airflow jobs to orchestrate and automate a data warehouse Build a Hadoop data lake, create ephemeral clusters, and run jobs on the Dataproc cluster Leverage Pub/Sub for messaging and ingestion for event-driven systems Use Dataflow to perform ETL on streaming data Unlock the power of your data with Data Studio Calculate the GCP cost estimation for your end-to-end data solutions Who this book is for This book is for data engineers, data analysts, and anyone looking to design and manage data processing pipelines using GCP. You'll find this book useful if you are preparing to take Google's Professional Data Engineer exam. Beginner-level understanding of data science, the Python programming language, and Linux commands is necessary. A basic understanding of data processing and cloud computing, in general, will help you make the most out of this book.

Data Engineering on Azure

Data Engineering on Azure PDF Author: Vlad Riscutia
Publisher: Simon and Schuster
ISBN: 1617298921
Category : Computers
Languages : en
Pages : 334

Get Book Here

Book Description
Build a data platform to the industry-leading standards set by Microsoft’s own infrastructure. Summary In Data Engineering on Azure you will learn how to: Pick the right Azure services for different data scenarios Manage data inventory Implement production quality data modeling, analytics, and machine learning workloads Handle data governance Using DevOps to increase reliability Ingesting, storing, and distributing data Apply best practices for compliance and access control Data Engineering on Azure reveals the data management patterns and techniques that support Microsoft’s own massive data infrastructure. Author Vlad Riscutia, a data engineer at Microsoft, teaches you to bring an engineering rigor to your data platform and ensure that your data prototypes function just as well under the pressures of production. You'll implement common data modeling patterns, stand up cloud-native data platforms on Azure, and get to grips with DevOps for both analytics and machine learning. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify. About the book In Data Engineering on Azure you’ll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you’ll set up efficient machine learning pipelines, and then master time-saving automation and DevOps solutions. The Azure-based examples are easy to reproduce on other cloud platforms. What's inside Data inventory and data governance Assure data quality, compliance, and distribution Build automated pipelines to increase reliability Ingest, store, and distribute data Production-quality data modeling, analytics, and machine learning About the reader For data engineers familiar with cloud computing and DevOps. About the author Vlad Riscutia is a software architect at Microsoft. Table of Contents 1 Introduction PART 1 INFRASTRUCTURE 2 Storage 3 DevOps 4 Orchestration PART 2 WORKLOADS 5 Processing 6 Analytics 7 Machine learning PART 3 GOVERNANCE 8 Metadata 9 Data quality 10 Compliance 11 Distributing data

Perspectives on Data Science for Software Engineering

Perspectives on Data Science for Software Engineering PDF Author: Tim Menzies
Publisher: Morgan Kaufmann
ISBN: 0128042613
Category : Computers
Languages : en
Pages : 410

Get Book Here

Book Description
Perspectives on Data Science for Software Engineering presents the best practices of seasoned data miners in software engineering. The idea for this book was created during the 2014 conference at Dagstuhl, an invitation-only gathering of leading computer scientists who meet to identify and discuss cutting-edge informatics topics. At the 2014 conference, the concept of how to transfer the knowledge of experts from seasoned software engineers and data scientists to newcomers in the field highlighted many discussions. While there are many books covering data mining and software engineering basics, they present only the fundamentals and lack the perspective that comes from real-world experience. This book offers unique insights into the wisdom of the community's leaders gathered to share hard-won lessons from the trenches. Ideas are presented in digestible chapters designed to be applicable across many domains. Topics included cover data collection, data sharing, data mining, and how to utilize these techniques in successful software projects. Newcomers to software engineering data science will learn the tips and tricks of the trade, while more experienced data scientists will benefit from war stories that show what traps to avoid. - Presents the wisdom of community experts, derived from a summit on software analytics - Provides contributed chapters that share discrete ideas and technique from the trenches - Covers top areas of concern, including mining security and social data, data visualization, and cloud-based data - Presented in clear chapters designed to be applicable across many domains

Data-Driven Engineering Design

Data-Driven Engineering Design PDF Author: Ang Liu
Publisher: Springer Nature
ISBN: 3030881814
Category : Technology & Engineering
Languages : en
Pages : 203

Get Book Here

Book Description
This book addresses the emerging paradigm of data-driven engineering design. In the big-data era, data is becoming a strategic asset for global manufacturers. This book shows how the power of data can be leveraged to drive the engineering design process, in particular, the early-stage design. Based on novel combinations of standing design methodology and the emerging data science, the book presents a collection of theoretically sound and practically viable design frameworks, which are intended to address a variety of critical design activities including conceptual design, complexity management, smart customization, smart product design, product service integration, and so forth. In addition, it includes a number of detailed case studies to showcase the application of data-driven engineering design. The book concludes with a set of promising research questions that warrant further investigation. Given its scope, the book will appeal to a broad readership, including postgraduate students, researchers, lecturers, and practitioners in the field of engineering design.

Aeronautical Engineer's Data Book

Aeronautical Engineer's Data Book PDF Author: Cliff Matthews
Publisher: Elsevier
ISBN: 0080488285
Category : Technology & Engineering
Languages : en
Pages : 282

Get Book Here

Book Description
Aeronautical Engineer's Data Bookis an essential handy guide containing useful up to date information regularly needed by the student or practising engineer. Covering all aspects of aircraft, both fixed wing and rotary craft, this pocket book provides quick access to useful aeronautical engineering data and sources of information for further in-depth information. - Quick reference to essential data - Most up to date information available

Data Analytics for Engineering and Construction Project Risk Management

Data Analytics for Engineering and Construction Project Risk Management PDF Author: Ivan Damnjanovic
Publisher: Springer
ISBN: 3030142515
Category : Technology & Engineering
Languages : en
Pages : 382

Get Book Here

Book Description
This book provides a step-by-step guidance on how to implement analytical methods in project risk management. The text focuses on engineering design and construction projects and as such is suitable for graduate students in engineering, construction, or project management, as well as practitioners aiming to develop, improve, and/or simplify corporate project management processes. The book places emphasis on building data-driven models for additive-incremental risks, where data can be collected on project sites, assembled from queries of corporate databases, and/or generated using procedures for eliciting experts’ judgments. While the presented models are mathematically inspired, they are nothing beyond what an engineering graduate is expected to know: some algebra, a little calculus, a little statistics, and, especially, undergraduate-level understanding of the probability theory. The book is organized in three parts and fourteen chapters. In Part I the authors provide the general introduction to risk and uncertainty analysis applied to engineering construction projects. The basic formulations and the methods for risk assessment used during project planning phase are discussed in Part II, while in Part III the authors present the methods for monitoring and (re)assessment of risks during project execution.

Advances in Engineering Data Handling

Advances in Engineering Data Handling PDF Author: P.C.C. Wang
Publisher: Springer Science & Business Media
ISBN: 1461328179
Category : Technology & Engineering
Languages : en
Pages : 304

Get Book Here

Book Description
To understand what we know and be aware of what is to be known has become the central focus in the treatment of engineering data handling issues. It has been some time since we began treating issues arriving from engineering data handling in a low key fashion because of its housekeeping chores and data maintenance aspects representing nonglamorous issues related to automation. Since the advent of CAD/CAM, large numbers of data bases have been generated through stand alone CAD systems and the rate of this automated means of generating data is rapidly increasing. This possibly is the key factor in changing our way of looking at engineering data related problems. This volume contains some of the papers, including revisions, which were presented at the fourth Automation Technology conference held in Monterey, California. This volume represents ATI's efforts to bring forth some of the important case studies related to engineering data handling from the user's point of view. Because of its potential enormous impact on management and productivity advancement, careful documentation and coordination for outstanding contributions to this area are of utmost importance. This volume may serve as a precursor to additional volumes in the area of engineering data handling and CAD/CAM related user studies. Anyone with comments or suggestions, as well as potential contributors, to this series, is encouraged to contact the editorial board of AT!.