Energy Management Control Strategies for Fuel Cell Hybrid Electric Vehicles

Energy Management Control Strategies for Fuel Cell Hybrid Electric Vehicles PDF Author: Askin Minaz
Publisher:
ISBN:
Category : Fuel cell vehicles
Languages : en
Pages : 166

Get Book Here

Book Description

Energy Management Control Strategies for Fuel Cell Hybrid Electric Vehicles

Energy Management Control Strategies for Fuel Cell Hybrid Electric Vehicles PDF Author: Askin Minaz
Publisher:
ISBN:
Category : Fuel cell vehicles
Languages : en
Pages : 166

Get Book Here

Book Description


Hybrid Electric Vehicles

Hybrid Electric Vehicles PDF Author: Simona Onori
Publisher: Springer
ISBN: 1447167813
Category : Technology & Engineering
Languages : en
Pages : 121

Get Book Here

Book Description
This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. The brief is intended as a straightforward tool for learning quickly about state-of-the-art energy-management strategies. It is particularly well-suited to the needs of graduate students and engineers already familiar with the basics of hybrid vehicles but who wish to learn more about their control strategies.

Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles

Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles PDF Author: Sheldon S. Williamson
Publisher: Springer Science & Business Media
ISBN: 1461477115
Category : Technology & Engineering
Languages : en
Pages : 263

Get Book Here

Book Description
This book addresses the practical issues for commercialization of current and future electric and plug-in hybrid electric vehicles (EVs/PHEVs). The volume focuses on power electronics and motor drives based solutions for both current as well as future EV/PHEV technologies. Propulsion system requirements and motor sizing for EVs is also discussed, along with practical system sizing examples. PHEV power system architectures are discussed in detail. Key EV battery technologies are explained as well as corresponding battery management issues are summarized. Advanced power electronic converter topologies for current and future charging infrastructures will also be discussed in detail. EV/PHEV interface with renewable energy is discussed in detail, with practical examples.

Predictive Energy Management for Fuel Cell Hybrid Electric Vehicle

Predictive Energy Management for Fuel Cell Hybrid Electric Vehicle PDF Author: Yang Zhou
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Fuel cell electric vehicles have been widely deemed as the promising substitution against traditional internal combustion engine-based vehicles. To reduce the vehicular operating costs, a practical solution at current stage is to efficiently and healthily use the hybrid propulsion systems. Such task can be fulfilled via reliable energy management strategies, which coordinate the outputs of multiple energy sources to satisfy the vehicular power request.In such context, this PhD thesis intends to devise intelligent energy management strategies for fuel cell hybrid electric vehicles. Compared to existing control strategies, this thesis especially focuses on the possibility of combining the forecasted driving information with the real-time optimal control framework. Several driving prediction techniques are developed to estimate the upcoming driving conditions, like the vehicle's speed, battery state-of-charge reference and driving pattern information. Thereafter, model predictive control is selected for real-time decision-making, since it is capable of handling the time-varying constrained systems and is convenient for the integration of driving predictive information. Based on the forecasted results and model predictive control, several predictive energy management strategies are established, aiming at saving hydrogen consumption and enhancing fuel cell durability versus benchmark strategies.Both offline simulation and software-in-the-loop testing have verified the functionality and real-time suitability of the proposed strategies.

Control of Fuel Cell Power Systems

Control of Fuel Cell Power Systems PDF Author: Jay T. Pukrushpan
Publisher: Springer Science & Business Media
ISBN: 1447137922
Category : Technology & Engineering
Languages : en
Pages : 175

Get Book Here

Book Description
Presenting the latest research in the control of fuel cell technology, this book will contribute to the commercial viability of the technology. The authors’ background in automotive technology gives the work added authority as a vital element of future planning.

Hybrid Electric Vehicles

Hybrid Electric Vehicles PDF Author: Chris Mi
Publisher: John Wiley & Sons
ISBN: 111897056X
Category : Technology & Engineering
Languages : en
Pages : 611

Get Book Here

Book Description
The latest developments in the field of hybrid electric vehicles Hybrid Electric Vehicles provides an introduction to hybrid vehicles, which include purely electric, hybrid electric, hybrid hydraulic, fuel cell vehicles, plug-in hybrid electric, and off-road hybrid vehicular systems. It focuses on the power and propulsion systems for these vehicles, including issues related to power and energy management. Other topics covered include hybrid vs. pure electric, HEV system architecture (including plug-in & charging control and hydraulic), off-road and other industrial utility vehicles, safety and EMC, storage technologies, vehicular power and energy management, diagnostics and prognostics, and electromechanical vibration issues. Hybrid Electric Vehicles, Second Edition is a comprehensively updated new edition with four new chapters covering recent advances in hybrid vehicle technology. New areas covered include battery modelling, charger design, and wireless charging. Substantial details have also been included on the architecture of hybrid excavators in the chapter related to special hybrid vehicles. Also included is a chapter providing an overview of hybrid vehicle technology, which offers a perspective on the current debate on sustainability and the environmental impact of hybrid and electric vehicle technology. Completely updated with new chapters Covers recent developments, breakthroughs, and technologies, including new drive topologies Explains HEV fundamentals and applications Offers a holistic perspective on vehicle electrification Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, Second Edition is a great resource for researchers and practitioners in the automotive industry, as well as for graduate students in automotive engineering.

Energy Management in Hybrid Electric Vehicles

Energy Management in Hybrid Electric Vehicles PDF Author: Siba Prasada Panigrahi
Publisher: Butterworth-Heinemann
ISBN: 9780128011799
Category : Technology & Engineering
Languages : en
Pages : 544

Get Book Here

Book Description
Energy Management in Hybrid Electric Vehicles provides the basics of energy management, powertrain configuration, and optimization in hybrid electric vehicles (HEVs), beginning with an introduction to industry challenges and the state-of-the-art in electric, hybrid, and fuel cell vehicles. It then considers, in detail, critical topics such as HEV architecture, battery technology, and regenerative braking, also providing guidance on different control and simulation models alongside the latest advances in rule-based and optimization-based approaches to energy management. Users will find a rare, practical overview of the knowledge needed to work in this fast-moving area. Provides an overview of the theory and practical examples needed for engineers to confidently analyze hybrid configurations and control strategies Ideal reference for those interested in energy management, hybrid electric vehicles, powertrain configuration, fuel cell vehicles, HEV architecture, battery technology, and regenerative braking Brings together, in a single resource, cutting-edge knowledge from the different fields involved in the development of hybrid electric vehicle technology Offers guidance on different control, simulation, and optimization approaches, enabling the selection of appropriate energy management solutions for particular applications

Modern Electric, Hybrid Electric, and Fuel Cell Vehicles

Modern Electric, Hybrid Electric, and Fuel Cell Vehicles PDF Author: Mehrdad Ehsani
Publisher: CRC Press
ISBN: 1420054007
Category : Technology & Engineering
Languages : en
Pages : 557

Get Book Here

Book Description
Air pollution, global warming, and the steady decrease in petroleum resources continue to stimulate interest in the development of safe, clean, and highly efficient transportation. Building on the foundation of the bestselling first edition, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, Second Edition updates and expands its detailed coverage of the vehicle technologies that offer the most promising solutions to these issues affecting the automotive industry. Proven as a useful in-depth resource and comprehensive reference for modern automotive systems engineers, students, and researchers, this book speaks from the perspective of the overall drive train system and not just its individual components. New to the second edition: A case study appendix that breaks down the Toyota Prius hybrid system Corrections and updates of the material in the first edition Three new chapters on drive train design methodology and control principles A completely rewritten chapter on Fundamentals of Regenerative Braking Employing sufficient mathematical rigor, the authors comprehensively cover vehicle performance characteristics, EV and HEV configurations, control strategies, modeling, and simulations for modern vehicles. They also cover topics including: Drive train architecture analysis and design methodologies Internal Combustion Engine (ICE)-based drive trains Electric propulsion systems Energy storage systems Regenerative braking Fuel cell applications in vehicles Hybrid-electric drive train design The first edition of this book gave practicing engineers and students a systematic reference to fully understand the essentials of this new technology. This edition introduces newer topics and offers deeper treatments than those included in the first. Revised many times over many years, it will greatly aid engineers, students, researchers, and other professionals who are working in automotive-related industries, as well as those in government and academia.

Modern Electric, Hybrid Electric, and Fuel Cell Vehicles

Modern Electric, Hybrid Electric, and Fuel Cell Vehicles PDF Author: Mehrdad Ehsani
Publisher: CRC Press
ISBN: 0429998244
Category : Technology & Engineering
Languages : en
Pages : 546

Get Book Here

Book Description
"This book is an introduction to automotive technology, with specic reference to battery electric, hybrid electric, and fuel cell electric vehicles. It could serve electrical engineers who need to know more about automobiles or automotive engineers who need to know about electrical propulsion systems. For example, this reviewer, who is a specialist in electric machinery, could use this book to better understand the automobiles for which the reviewer is designing electric drive motors. An automotive engineer, on the other hand, might use it to better understand the nature of motors and electric storage systems for application in automobiles, trucks or motorcycles. The early chapters of the book are accessible to technically literate people who need to know something about cars. While the rst chapter is historical in nature, the second chapter is a good introduction to automobiles, including dynamics of propulsion and braking. The third chapter discusses, in some detail, spark ignition and compression ignition (Diesel) engines. The fourth chapter discusses the nature of transmission systems.” —James Kirtley, Massachusetts Institute of Technology, USA “The third edition covers extensive topics in modern electric, hybrid electric, and fuel cell vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented. Featured with design of various vehicle drivetrains, as well as a multi-objective optimization software, it is an estimable work to meet the needs of automotive industry.” —Haiyan Henry Zhang, Purdue University, USA “The extensive combined experience of the authors have produced an extensive volume covering a broad range but detailed topics on the principles, design and architectures of Modern Electric, Hybrid Electric, and Fuel Cell Vehicles in a well-structured, clear and concise manner. The volume offers a complete overview of technologies, their selection, integration & control, as well as an interesting Technical Overview of the Toyota Prius. The technical chapters are complemented with example problems and user guides to assist the reader in practical calculations through the use of common scientic computing packages. It will be of interest mainly to research postgraduates working in this eld as well as established academic researchers, industrial R&D engineers and allied professionals.” —Christopher Donaghy-Sparg, Durham University, United Kingdom The book deals with the fundamentals, theoretical bases, and design methodologies of conventional internal combustion engine (ICE) vehicles, electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). The design methodology is described in mathematical terms, step-by-step, and the topics are approached from the overall drive train system, not just individual components. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results. All the chapters have been updated, and two new chapters on Mild Hybrids and Optimal Sizing and Dimensioning and Control are also included • Chapters updated throughout the text. • New homework problems, solutions, and examples. • Includes two new chapters. • Features accompanying MATLABTM software.

Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles

Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles PDF Author: Teng Liu
Publisher: Morgan & Claypool Publishers
ISBN: 1681736195
Category : Technology & Engineering
Languages : en
Pages : 99

Get Book Here

Book Description
Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles. Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application. In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.