Author: Randal Berry
Publisher: Springer Nature
ISBN: 3031792548
Category : Computers
Languages : en
Pages : 84
Book Description
Packet delay and energy consumption are important considerations in wireless and sensor networks as these metrics directly affect the quality of service of the application and the resource consumption of the network; especially, for a rapidly growing class of real-time applications that impose strict restrictions on packet delays. Dynamic rate control is a novel technique for adapting the transmission rate of wireless devices, almost in real-time, to opportunistically exploit time-varying channel conditions as well as changing traffic patterns. Since power consumption is not a linear function of the rate and varies significantly with the channel conditions, adapting the rate has significant benefits in minimizing energy consumption. These benefits have prompted significant research in developing algorithms for achieving optimal rate adaptation while satisfying quality of service requirements. In this book, we provide a comprehensive study of dynamic rate control for energy minimization under packet delay constraints. We present several formulations and approaches adopted in the literature ranging from discrete-time formulations and dynamic programming based solutions to continuous-time approaches utilizing ideas from network calculus and stochastic optimal control theory. The goal of this book is to expose the reader to the important problem of wireless data transmission with delay constraints and to the rich set of tools developed in recent years to address it. Table of Contents: Introduction / Transmission Rate Adaptation under Deadline Constraints / Average Delay Constraints
Energy-Efficient Scheduling under Delay Constraints for Wireless Networks
Author: Randal Berry
Publisher: Springer Nature
ISBN: 3031792548
Category : Computers
Languages : en
Pages : 84
Book Description
Packet delay and energy consumption are important considerations in wireless and sensor networks as these metrics directly affect the quality of service of the application and the resource consumption of the network; especially, for a rapidly growing class of real-time applications that impose strict restrictions on packet delays. Dynamic rate control is a novel technique for adapting the transmission rate of wireless devices, almost in real-time, to opportunistically exploit time-varying channel conditions as well as changing traffic patterns. Since power consumption is not a linear function of the rate and varies significantly with the channel conditions, adapting the rate has significant benefits in minimizing energy consumption. These benefits have prompted significant research in developing algorithms for achieving optimal rate adaptation while satisfying quality of service requirements. In this book, we provide a comprehensive study of dynamic rate control for energy minimization under packet delay constraints. We present several formulations and approaches adopted in the literature ranging from discrete-time formulations and dynamic programming based solutions to continuous-time approaches utilizing ideas from network calculus and stochastic optimal control theory. The goal of this book is to expose the reader to the important problem of wireless data transmission with delay constraints and to the rich set of tools developed in recent years to address it. Table of Contents: Introduction / Transmission Rate Adaptation under Deadline Constraints / Average Delay Constraints
Publisher: Springer Nature
ISBN: 3031792548
Category : Computers
Languages : en
Pages : 84
Book Description
Packet delay and energy consumption are important considerations in wireless and sensor networks as these metrics directly affect the quality of service of the application and the resource consumption of the network; especially, for a rapidly growing class of real-time applications that impose strict restrictions on packet delays. Dynamic rate control is a novel technique for adapting the transmission rate of wireless devices, almost in real-time, to opportunistically exploit time-varying channel conditions as well as changing traffic patterns. Since power consumption is not a linear function of the rate and varies significantly with the channel conditions, adapting the rate has significant benefits in minimizing energy consumption. These benefits have prompted significant research in developing algorithms for achieving optimal rate adaptation while satisfying quality of service requirements. In this book, we provide a comprehensive study of dynamic rate control for energy minimization under packet delay constraints. We present several formulations and approaches adopted in the literature ranging from discrete-time formulations and dynamic programming based solutions to continuous-time approaches utilizing ideas from network calculus and stochastic optimal control theory. The goal of this book is to expose the reader to the important problem of wireless data transmission with delay constraints and to the rich set of tools developed in recent years to address it. Table of Contents: Introduction / Transmission Rate Adaptation under Deadline Constraints / Average Delay Constraints
Analytical Methods for Network Congestion Control
Author: Steven Low
Publisher: Springer Nature
ISBN: 3031792750
Category : Computers
Languages : en
Pages : 193
Book Description
The congestion control mechanism has been responsible for maintaining stability as the Internet scaled up by many orders of magnitude in size, speed, traffic volume, coverage, and complexity over the last three decades. In this book, we develop a coherent theory of congestion control from the ground up to help understand and design these algorithms. We model network traffic as fluids that flow from sources to destinations and model congestion control algorithms as feedback dynamical systems. We show that the model is well defined. We characterize its equilibrium points and prove their stability. We will use several real protocols for illustration but the emphasis will be on various mathematical techniques for algorithm analysis. Specifically we are interested in four questions: 1. How are congestion control algorithms modelled? 2. Are the models well defined? 3. How are the equilibrium points of a congestion control model characterized? 4. How are the stability of these equilibrium points analyzed? For each topic, we first present analytical tools, from convex optimization, to control and dynamical systems, Lyapunov and Nyquist stability theorems, and to projection and contraction theorems. We then apply these basic tools to congestion control algorithms and rigorously prove their equilibrium and stability properties. A notable feature of this book is the careful treatment of projected dynamics that introduces discontinuity in our differential equations. Even though our development is carried out in the context of congestion control, the set of system theoretic tools employed and the process of understanding a physical system, building mathematical models, and analyzing these models for insights have a much wider applicability than to congestion control.
Publisher: Springer Nature
ISBN: 3031792750
Category : Computers
Languages : en
Pages : 193
Book Description
The congestion control mechanism has been responsible for maintaining stability as the Internet scaled up by many orders of magnitude in size, speed, traffic volume, coverage, and complexity over the last three decades. In this book, we develop a coherent theory of congestion control from the ground up to help understand and design these algorithms. We model network traffic as fluids that flow from sources to destinations and model congestion control algorithms as feedback dynamical systems. We show that the model is well defined. We characterize its equilibrium points and prove their stability. We will use several real protocols for illustration but the emphasis will be on various mathematical techniques for algorithm analysis. Specifically we are interested in four questions: 1. How are congestion control algorithms modelled? 2. Are the models well defined? 3. How are the equilibrium points of a congestion control model characterized? 4. How are the stability of these equilibrium points analyzed? For each topic, we first present analytical tools, from convex optimization, to control and dynamical systems, Lyapunov and Nyquist stability theorems, and to projection and contraction theorems. We then apply these basic tools to congestion control algorithms and rigorously prove their equilibrium and stability properties. A notable feature of this book is the careful treatment of projected dynamics that introduces discontinuity in our differential equations. Even though our development is carried out in the context of congestion control, the set of system theoretic tools employed and the process of understanding a physical system, building mathematical models, and analyzing these models for insights have a much wider applicability than to congestion control.
Embracing Risk
Author: Mingyan Liu
Publisher: Springer Nature
ISBN: 3031023811
Category : Computers
Languages : en
Pages : 127
Book Description
This book provides an introduction to the theory and practice of cyber insurance. Insurance as an economic instrument designed for risk management through risk spreading has existed for centuries. Cyber insurance is one of the newest sub-categories of this old instrument. It emerged in the 1990s in response to an increasing impact that information security started to have on business operations. For much of its existence, the practice of cyber insurance has been on how to obtain accurate actuarial information to inform specifics of a cyber insurance contract. As the cybersecurity threat landscape continues to bring about novel forms of attacks and losses, ransomware insurance being the latest example, the insurance practice is also evolving in terms of what types of losses are covered, what are excluded, and how cyber insurance intersects with traditional casualty and property insurance. The central focus, however, has continued to be risk management through risk transfer, the key functionality of insurance. The goal of this book is to shift the focus from this conventional view of using insurance as primarily a risk management mechanism to one of risk control and reduction by looking for ways to re-align the incentives. On this front we have encouraging results that suggest the validity of using insurance as an effective economic and incentive tool to control cyber risk. This book is intended for someone interested in obtaining a quantitative understanding of cyber insurance and how innovation is possible around this centuries-old financial instrument.
Publisher: Springer Nature
ISBN: 3031023811
Category : Computers
Languages : en
Pages : 127
Book Description
This book provides an introduction to the theory and practice of cyber insurance. Insurance as an economic instrument designed for risk management through risk spreading has existed for centuries. Cyber insurance is one of the newest sub-categories of this old instrument. It emerged in the 1990s in response to an increasing impact that information security started to have on business operations. For much of its existence, the practice of cyber insurance has been on how to obtain accurate actuarial information to inform specifics of a cyber insurance contract. As the cybersecurity threat landscape continues to bring about novel forms of attacks and losses, ransomware insurance being the latest example, the insurance practice is also evolving in terms of what types of losses are covered, what are excluded, and how cyber insurance intersects with traditional casualty and property insurance. The central focus, however, has continued to be risk management through risk transfer, the key functionality of insurance. The goal of this book is to shift the focus from this conventional view of using insurance as primarily a risk management mechanism to one of risk control and reduction by looking for ways to re-align the incentives. On this front we have encouraging results that suggest the validity of using insurance as an effective economic and incentive tool to control cyber risk. This book is intended for someone interested in obtaining a quantitative understanding of cyber insurance and how innovation is possible around this centuries-old financial instrument.
Communication Networks
Author: Jean Walrand
Publisher: Springer Nature
ISBN: 3031792815
Category : Computers
Languages : en
Pages : 220
Book Description
This book results from many years of teaching an upper division course on communication networks in the EECS department at the University of California, Berkeley. It is motivated by the perceived need for an easily accessible textbook that puts emphasis on the core concepts behind current and next generation networks. After an overview of how today's Internet works and a discussion of the main principles behind its architecture, we discuss the key ideas behind Ethernet, WiFi networks, routing, internetworking, and TCP. To make the book as self-contained as possible, brief discussions of probability and Markov chain concepts are included in the appendices. This is followed by a brief discussion of mathematical models that provide insight into the operations of network protocols. Next, the main ideas behind the new generation of wireless networks based on LTE, and the notion of QoS are presented. A concise discussion of the physical layer technologies underlying various networks is also included. Finally, a sampling of topics is presented that may have significant influence on the future evolution of networks, including overlay networks like content delivery and peer-to-peer networks, sensor networks, distributed algorithms, Byzantine agreement, source compression, SDN and NFV, and Internet of Things.
Publisher: Springer Nature
ISBN: 3031792815
Category : Computers
Languages : en
Pages : 220
Book Description
This book results from many years of teaching an upper division course on communication networks in the EECS department at the University of California, Berkeley. It is motivated by the perceived need for an easily accessible textbook that puts emphasis on the core concepts behind current and next generation networks. After an overview of how today's Internet works and a discussion of the main principles behind its architecture, we discuss the key ideas behind Ethernet, WiFi networks, routing, internetworking, and TCP. To make the book as self-contained as possible, brief discussions of probability and Markov chain concepts are included in the appendices. This is followed by a brief discussion of mathematical models that provide insight into the operations of network protocols. Next, the main ideas behind the new generation of wireless networks based on LTE, and the notion of QoS are presented. A concise discussion of the physical layer technologies underlying various networks is also included. Finally, a sampling of topics is presented that may have significant influence on the future evolution of networks, including overlay networks like content delivery and peer-to-peer networks, sensor networks, distributed algorithms, Byzantine agreement, source compression, SDN and NFV, and Internet of Things.
Poisson Line Cox Process
Author: Harpreet S. Dhillon
Publisher: Springer Nature
ISBN: 303102379X
Category : Computers
Languages : en
Pages : 131
Book Description
This book provides a comprehensive treatment of the Poisson line Cox process (PLCP) and its applications to vehicular networks. The PLCP is constructed by placing points on each line of a Poisson line process (PLP) as per an independent Poisson point process (PPP). For vehicular applications, one can imagine the layout of the road network as a PLP and the vehicles on the roads as the points of the PLCP. First, a brief historical account of the evolution of the theory of PLP is provided to familiarize readers with the seminal contributions in this area. In order to provide a self-contained treatment of this topic, the construction and key fundamental properties of both PLP and PLCP are discussed in detail. The rest of the book is devoted to the applications of these models to a variety of wireless networks, including vehicular communication networks and localization networks. Specifically, modeling the locations of vehicular nodes and roadside units (RSUs) using PLCP, the signal-to-interference-plus-noise ratio (SINR)-based coverage analysis is presented for both ad hoc and cellular network models. For a similar setting, the load on the cellular macro base stations (MBSs) and RSUs in a vehicular network is also characterized analytically. For the localization networks, PLP is used to model blockages, which is shown to facilitate the characterization of asymptotic blind spot probability in a localization application. Finally, the path distance characteristics for a special case of PLCP are analyzed, which can be leveraged to answer critical questions in the areas of transportation networks and urban planning. The book is concluded with concrete suggestions on future directions of research. Based largely on the original research of the authors, this is the first book that specifically focuses on the self-contained mathematical treatment of the PLCP. The ideal audience of this book is graduate students as well as researchers in academia and industry who are familiar with probability theory, have some exposure to point processes, and are interested in the field of stochastic geometry and vehicular networks. Given the diverse backgrounds of the potential readers, the focus has been on providing an accessible and pedagogical treatment of this topic by consciously avoiding the measure theoretic details without compromising mathematical rigor.
Publisher: Springer Nature
ISBN: 303102379X
Category : Computers
Languages : en
Pages : 131
Book Description
This book provides a comprehensive treatment of the Poisson line Cox process (PLCP) and its applications to vehicular networks. The PLCP is constructed by placing points on each line of a Poisson line process (PLP) as per an independent Poisson point process (PPP). For vehicular applications, one can imagine the layout of the road network as a PLP and the vehicles on the roads as the points of the PLCP. First, a brief historical account of the evolution of the theory of PLP is provided to familiarize readers with the seminal contributions in this area. In order to provide a self-contained treatment of this topic, the construction and key fundamental properties of both PLP and PLCP are discussed in detail. The rest of the book is devoted to the applications of these models to a variety of wireless networks, including vehicular communication networks and localization networks. Specifically, modeling the locations of vehicular nodes and roadside units (RSUs) using PLCP, the signal-to-interference-plus-noise ratio (SINR)-based coverage analysis is presented for both ad hoc and cellular network models. For a similar setting, the load on the cellular macro base stations (MBSs) and RSUs in a vehicular network is also characterized analytically. For the localization networks, PLP is used to model blockages, which is shown to facilitate the characterization of asymptotic blind spot probability in a localization application. Finally, the path distance characteristics for a special case of PLCP are analyzed, which can be leveraged to answer critical questions in the areas of transportation networks and urban planning. The book is concluded with concrete suggestions on future directions of research. Based largely on the original research of the authors, this is the first book that specifically focuses on the self-contained mathematical treatment of the PLCP. The ideal audience of this book is graduate students as well as researchers in academia and industry who are familiar with probability theory, have some exposure to point processes, and are interested in the field of stochastic geometry and vehicular networks. Given the diverse backgrounds of the potential readers, the focus has been on providing an accessible and pedagogical treatment of this topic by consciously avoiding the measure theoretic details without compromising mathematical rigor.
Multi-Armed Bandits
Author: Qing Zhao
Publisher: Springer Nature
ISBN: 3031792890
Category : Computers
Languages : en
Pages : 147
Book Description
Multi-armed bandit problems pertain to optimal sequential decision making and learning in unknown environments. Since the first bandit problem posed by Thompson in 1933 for the application of clinical trials, bandit problems have enjoyed lasting attention from multiple research communities and have found a wide range of applications across diverse domains. This book covers classic results and recent development on both Bayesian and frequentist bandit problems. We start in Chapter 1 with a brief overview on the history of bandit problems, contrasting the two schools—Bayesian and frequentist—of approaches and highlighting foundational results and key applications. Chapters 2 and 4 cover, respectively, the canonical Bayesian and frequentist bandit models. In Chapters 3 and 5, we discuss major variants of the canonical bandit models that lead to new directions, bring in new techniques, and broaden the applications of this classical problem. In Chapter 6, we present several representative application examples in communication networks and social-economic systems, aiming to illuminate the connections between the Bayesian and the frequentist formulations of bandit problems and how structural results pertaining to one may be leveraged to obtain solutions under the other.
Publisher: Springer Nature
ISBN: 3031792890
Category : Computers
Languages : en
Pages : 147
Book Description
Multi-armed bandit problems pertain to optimal sequential decision making and learning in unknown environments. Since the first bandit problem posed by Thompson in 1933 for the application of clinical trials, bandit problems have enjoyed lasting attention from multiple research communities and have found a wide range of applications across diverse domains. This book covers classic results and recent development on both Bayesian and frequentist bandit problems. We start in Chapter 1 with a brief overview on the history of bandit problems, contrasting the two schools—Bayesian and frequentist—of approaches and highlighting foundational results and key applications. Chapters 2 and 4 cover, respectively, the canonical Bayesian and frequentist bandit models. In Chapters 3 and 5, we discuss major variants of the canonical bandit models that lead to new directions, bring in new techniques, and broaden the applications of this classical problem. In Chapter 6, we present several representative application examples in communication networks and social-economic systems, aiming to illuminate the connections between the Bayesian and the frequentist formulations of bandit problems and how structural results pertaining to one may be leveraged to obtain solutions under the other.
Network Connectivity
Author: Chen Chen
Publisher: Morgan & Claypool Publishers
ISBN: 1636392962
Category : Computers
Languages : en
Pages : 165
Book Description
Networks naturally appear in many high-impact domains, ranging from social network analysis to disease dissemination studies to infrastructure system design. Within network studies, network connectivity plays an important role in a myriad of applications. The diversity of application areas has spurred numerous connectivity measures, each designed for some specific tasks. Depending on the complexity of connectivity measures, the computational cost of calculating the connectivity score can vary significantly. Moreover, the complexity of the connectivity would predominantly affect the hardness of connectivity optimization, which is a fundamental problem for network connectivity studies. This book presents a thorough study in network connectivity, including its concepts, computation, and optimization. Specifically, a unified connectivity measure model will be introduced to unveil the commonality among existing connectivity measures. For the connectivity computation aspect, the authors introduce the connectivity tracking problems and present several effective connectivity inference frameworks under different network settings. Taking the connectivity optimization perspective, the book analyzes the problem theoretically and introduces an approximation framework to effectively optimize the network connectivity.Lastly, the book discusses the new research frontiers and directions to explore for network connectivity studies. This book is an accessible introduction to the study of connectivity in complex networks. It is essential reading for advanced undergraduates, Ph.D. students, as well as researchers and practitioners who are interested in graph mining, data mining, and machine learning.
Publisher: Morgan & Claypool Publishers
ISBN: 1636392962
Category : Computers
Languages : en
Pages : 165
Book Description
Networks naturally appear in many high-impact domains, ranging from social network analysis to disease dissemination studies to infrastructure system design. Within network studies, network connectivity plays an important role in a myriad of applications. The diversity of application areas has spurred numerous connectivity measures, each designed for some specific tasks. Depending on the complexity of connectivity measures, the computational cost of calculating the connectivity score can vary significantly. Moreover, the complexity of the connectivity would predominantly affect the hardness of connectivity optimization, which is a fundamental problem for network connectivity studies. This book presents a thorough study in network connectivity, including its concepts, computation, and optimization. Specifically, a unified connectivity measure model will be introduced to unveil the commonality among existing connectivity measures. For the connectivity computation aspect, the authors introduce the connectivity tracking problems and present several effective connectivity inference frameworks under different network settings. Taking the connectivity optimization perspective, the book analyzes the problem theoretically and introduces an approximation framework to effectively optimize the network connectivity.Lastly, the book discusses the new research frontiers and directions to explore for network connectivity studies. This book is an accessible introduction to the study of connectivity in complex networks. It is essential reading for advanced undergraduates, Ph.D. students, as well as researchers and practitioners who are interested in graph mining, data mining, and machine learning.
Age of Information
Author: Yin Sun
Publisher: Springer Nature
ISBN: 3031792939
Category : Computers
Languages : en
Pages : 204
Book Description
Information usually has the highest value when it is fresh. For example, real-time knowledge about the location, orientation, and speed of motor vehicles is imperative in autonomous driving, and the access to timely information about stock prices and interest rate movements is essential for developing trading strategies on the stock market. The Age of Information (AoI) concept, together with its recent extensions, provides a means of quantifying the freshness of information and an opportunity to improve the performance of real-time systems and networks. Recent research advances on AoI suggest that many well-known design principles of traditional data networks (for, e.g., providing high throughput and low delay) need to be re-examined for enhancing information freshness in rapidly emerging real-time applications. This book provides a suite of analytical tools and insightful results on the generation of information-update packets at the source nodes and the design of network protocols forwarding the packets to their destinations. The book also points out interesting connections between AoI concept and information theory, signal processing, and control theory, which are worthy of future investigation.
Publisher: Springer Nature
ISBN: 3031792939
Category : Computers
Languages : en
Pages : 204
Book Description
Information usually has the highest value when it is fresh. For example, real-time knowledge about the location, orientation, and speed of motor vehicles is imperative in autonomous driving, and the access to timely information about stock prices and interest rate movements is essential for developing trading strategies on the stock market. The Age of Information (AoI) concept, together with its recent extensions, provides a means of quantifying the freshness of information and an opportunity to improve the performance of real-time systems and networks. Recent research advances on AoI suggest that many well-known design principles of traditional data networks (for, e.g., providing high throughput and low delay) need to be re-examined for enhancing information freshness in rapidly emerging real-time applications. This book provides a suite of analytical tools and insightful results on the generation of information-update packets at the source nodes and the design of network protocols forwarding the packets to their destinations. The book also points out interesting connections between AoI concept and information theory, signal processing, and control theory, which are worthy of future investigation.
BATS Codes
Author: Shenghao Yang
Publisher: Springer Nature
ISBN: 3031792785
Category : Computers
Languages : en
Pages : 208
Book Description
This book discusses an efficient random linear network coding scheme, called BATched Sparse code, or BATS code, which is proposed for communication through multi-hop networks with packet loss. Multi-hop wireless networks have applications in the Internet of Things (IoT), space, and under-water network communications, where the packet loss rate per network link is high, and feedbacks have long delays and are unreliable. Traditional schemes like retransmission and fountain codes are not sufficient to resolve the packet loss so that the existing communication solutions for multi-hop wireless networks have either long delay or low throughput when the network length is longer than a few hops. These issues can be resolved by employing network coding in the network, but the high computational and storage costs of such schemes prohibit their implementation in many devices, in particular, IoT devices that typically have low computational power and very limited storage. A BATS code consists of an outer code and an inner code. As a matrix generalization of a fountain code, the outer code generates a potentially unlimited number of batches, each of which consists of a certain number (called the batch size) of coded packets. The inner code comprises (random) linear network coding at the intermediate network nodes, which is applied on packets belonging to the same batch. When the batch size is 1, the outer code reduces to an LT code (or Raptor code if precode is applied), and network coding of the batches reduces to packet forwarding. BATS codes preserve the salient features of fountain codes, in particular, their rateless property and low encoding/decoding complexity. BATS codes also achieve the throughput gain of random linear network coding. This book focuses on the fundamental features and performance analysis of BATS codes, and includes some guidelines and examples on how to design a network protocol using BATS codes.
Publisher: Springer Nature
ISBN: 3031792785
Category : Computers
Languages : en
Pages : 208
Book Description
This book discusses an efficient random linear network coding scheme, called BATched Sparse code, or BATS code, which is proposed for communication through multi-hop networks with packet loss. Multi-hop wireless networks have applications in the Internet of Things (IoT), space, and under-water network communications, where the packet loss rate per network link is high, and feedbacks have long delays and are unreliable. Traditional schemes like retransmission and fountain codes are not sufficient to resolve the packet loss so that the existing communication solutions for multi-hop wireless networks have either long delay or low throughput when the network length is longer than a few hops. These issues can be resolved by employing network coding in the network, but the high computational and storage costs of such schemes prohibit their implementation in many devices, in particular, IoT devices that typically have low computational power and very limited storage. A BATS code consists of an outer code and an inner code. As a matrix generalization of a fountain code, the outer code generates a potentially unlimited number of batches, each of which consists of a certain number (called the batch size) of coded packets. The inner code comprises (random) linear network coding at the intermediate network nodes, which is applied on packets belonging to the same batch. When the batch size is 1, the outer code reduces to an LT code (or Raptor code if precode is applied), and network coding of the batches reduces to packet forwarding. BATS codes preserve the salient features of fountain codes, in particular, their rateless property and low encoding/decoding complexity. BATS codes also achieve the throughput gain of random linear network coding. This book focuses on the fundamental features and performance analysis of BATS codes, and includes some guidelines and examples on how to design a network protocol using BATS codes.
A Primer on Physical-Layer Network Coding
Author: Soung Liew
Publisher: Springer Nature
ISBN: 3031792696
Category : Computers
Languages : en
Pages : 202
Book Description
The concept of physical-layer network coding (PNC) was proposed in 2006 for application in wireless networks. Since then it has developed into a subfield of communications and networking with a wide following. This book is a primer on PNC. It is the outcome of a set of lecture notes for a course for beginning graduate students at The Chinese University of Hong Kong. The target audience is expected to have some prior background knowledge in communication theory and wireless communications, but not working knowledge at the research level. Indeed, a goal of this book/course is to allow the reader to gain a deeper appreciation of the various nuances of wireless communications and networking by focusing on problems arising from the study of PNC. Specifically, we introduce the tools and techniques needed to solve problems in PNC, and many of these tools and techniques are drawn from the more general disciplines of signal processing, communications, and networking: PNC is used as a pivot to learn about the fundamentals of signal processing techniques and wireless communications in general. We feel that such a problem-centric approach will give the reader a more in-depth understanding of these disciplines and allow him/her to see first-hand how the techniques of these disciplines can be applied to solve real research problems. As a primer, this book does not cover many advanced materials related to PNC. PNC is an active research field and many new results will no doubt be forthcoming in the near future. We believe that this book will provide a good contextual framework for the interpretation of these advanced results should the reader decide to probe further into the field of PNC.
Publisher: Springer Nature
ISBN: 3031792696
Category : Computers
Languages : en
Pages : 202
Book Description
The concept of physical-layer network coding (PNC) was proposed in 2006 for application in wireless networks. Since then it has developed into a subfield of communications and networking with a wide following. This book is a primer on PNC. It is the outcome of a set of lecture notes for a course for beginning graduate students at The Chinese University of Hong Kong. The target audience is expected to have some prior background knowledge in communication theory and wireless communications, but not working knowledge at the research level. Indeed, a goal of this book/course is to allow the reader to gain a deeper appreciation of the various nuances of wireless communications and networking by focusing on problems arising from the study of PNC. Specifically, we introduce the tools and techniques needed to solve problems in PNC, and many of these tools and techniques are drawn from the more general disciplines of signal processing, communications, and networking: PNC is used as a pivot to learn about the fundamentals of signal processing techniques and wireless communications in general. We feel that such a problem-centric approach will give the reader a more in-depth understanding of these disciplines and allow him/her to see first-hand how the techniques of these disciplines can be applied to solve real research problems. As a primer, this book does not cover many advanced materials related to PNC. PNC is an active research field and many new results will no doubt be forthcoming in the near future. We believe that this book will provide a good contextual framework for the interpretation of these advanced results should the reader decide to probe further into the field of PNC.